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Abstract A recently developed 111lcromechanical theon 1,,1' the thermoelastic response of func­
tionally graded compOSl1es \\ ith nonuniform tiber spaCIng In the through-thickness direction is
further extended to enable analysis ofmaterial architectures charactenzed by arbitrarily nonuniform
fiber spacing in two directions. In contrast to currently emploved micromechanical approaches
applied to functionally graded materials. which decouple the local and global effects by assuming
the existence of a representative volume element at every point \~ithin the composite, the new theory
explicitly couples the local and global effects. The analytical dc\elopment is based on volumetric
averaging of the various field quantities. together with ilnposltion of boundary and interfacial
conditions in an average sense. Results are presented that ill ustrate the capability of the derived
theory to capture local stress grad tents at the free edge of a laminatcd composite plate due to the
application of a uniform temperature change. It is further shown that it IS possible to reduce the
magnitude of these stress concentrations by a proper management of the microstructure of the
composite plies near the I'ree edge. Thus by an appropnate tailoring of the microstructure it is
possible to reduce or prevent the likelihood of delamination al free edges of standard composite
laminates.
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surface integrals of the suhcell Interfaclal stresses (J',~!'" at ,\,\"' = ± d, 2

surface integrals of the subcell Interfacial stresses at \'Vi
' = ±h)?'2

surface integrals of the suhcell interfacial stresses at x\' = ±/'."2

I I'HRODLCTION

Functionally graded materials (FGMs) are a new generation of composite materials in
which the microstructural details are spatially varied through nonuniform distribution of
the reinforcement phase, by using reinforcement with different properties, sizes and shapes,
as well as by interchanging the roles of reinforcement and matrix phases in a continuous
manner. The result is a microstructure that produces continuously changing thermal and
mechanical properties at the macroscopic or continuum level.

The use of functionally graded materials in applications involving severe thermal
gradients is quickly gaining acceptance in the composite mechanics community and the
aerospace and aircraft industry. This is particularly true in Japan and Europe, where the
concept of FGMs was conceived. The current approach employed by the Japanese and
European researchers in analyzing the response of FGMs to thermal gradients is the
standard micromechanics approach based on the concept of a representative volume
element (RVE) assumed to be definable at each point within the heterogeneous material
(cf. Wakashima and Tsukamoto, 1990; Fukushima, 1992). This assumption, however,
neglects the possibility of coupling between local and global effects, thus leading to poten­
tially erroneous results in the presence of macroscopically nonuniform material properties
and large field variable gradients. This is particularly true when the temperature gradient
is large with respect to the dimension of the inclusion phase, the characteristic dimension
of the inclusion phase is large relative to the global dimensions of the composite, and the
number of uniformly or nonuniformly distributed inclusions is relatively small (Aboudi
et al., 1993). Perhaps the most important objection to using the standard RVE-based
micromechanics approach in the analysis of FGMs is the lack of a theoretical basis for the
definition of an RVE, which clearly cannor he unique in the presence o/continuously changing
properties owing to nonuniform inclusion spacing.

As a result of the limitations and shortcomings of the standard micromechanics
approach, a new higher order micromechanical theory for functionally graded materials,
"HOTFGM", that explicitly couples the local and global effects, has been developed
(Aboudi et aL 1993; Aboudi et al.. 1994a,b). The results obtained thus far have demon­
strated that the theory is an accurate, efficient and viable tool in the analysis of functionally
graded materials and design offunctionally graded architectures in metal matrix composites.
These results include verification of the accuracy of HOTFGM using the finite-element
method (Pindera and Dunn. 1995). and the assessment of the applicability of the uncoupled
micromechanics approach for the analysis of functionally graded materials (Pindera et al.,
1994, 1995). In particular. comparison of results obtained using the standard micro­
mechanics approach with those of HOTFGM has demonstrated the need for a theory which
explicitly takes into account the micro-macrostructural coupling effects, thus justifying the
development of the coupled higher-order theory.

HOTFGM is a recently constructed theory that continues to evolve. The original
formulation has been developed in the Cartesian coordinate system. and was intended for
the analysis of functionally graded plates subjected to a temperature gradient across the
plate's thickness that coincides with the direction along which the microstructure is graded.
The most recent developments of the Cartesian-based theory include incorporation of two
inelastic constitutive models for the response of metallic matrices (Aboudi et al., 1995a)
and extension of the theoretical framework to include generalized plane strain loading
situations in order to facilitate modeling of actual functionally graded structural com­
ponents (Aboudi et al., 1995b).

In this paper we present a further extension of HOTFGM that involves development
of a two-dimensional framework to enable modeling of composites functionally graded in
two directions. The analytical approach in the two-dimensional theory. as in the one­
dimensional version, is based on volumetric averaging of the various field quantities together
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with the imposition of boundar} and interfacial continuity conditions in an average sense.
The previous restriction of periodicity in two orthogonal directions, however, is presently
abandoned thus allowing arbitrary distribution of one or more reinforcement phases in one
plane. This leads to a signif1cant generalization of the theory. As a result, composites
with f1nite dimensions along the functionally graded directions can be analysed. Figure I
illustrates the types of internal architectures that can be analysed with this new two­
dimensional version of HOTFGM. These architectures include rows of aligned inclusions
(or continuous f1bers) with variable spacing in the functionally graded X2 and X3 directions
and regular spacing in the periodic \ direction (Fig I a). Alternatively. completely random
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inclusion (or fiber) architectures in the .y, .Y; plane can also be admitted (Fig. Ib). At
present. the two-dimensional version of the theory. herein called HOTFGM-2D, is limited
to the analysis of functionally graded composites in the linearly elastic range.

This theory is subsequently employed to study the free-edge problem in a symmetrically
laminated B/Ep-Ti composite plate subjected to a uniform temperature change. The capa­
bility of the theory to capture large stress gradients near a geometric discontinuity such as
the free edge is established upon comparison with finite-element analysis carried out by
Herakovich (1976) using homogenized properties for the BIEp plies. Subsequent incor­
poration of the actual microstructure of the B' Ep plies in the HOTFGM-2D analysis of
the free-edge stress fields demonstrates the limitations of the homogenized continuum
approach in the presence of course microstructure and large stress gradients. Finally, the
potential of using functionally graded fiber architectures in reducing edge effects in lami­
nated MMC plates is demonstrated by investigating the effect of nonuniform fiber dis­
tributions in the BIEp plies near the free edge. It should be noted that even though the
utility of the theory is demonstrated herein for the special case ofa symmetric laminate under
uniform temperature change, the theory naturally can be employed in more complicated
situations with non-zero temperature gradienh.

~ ""ALYTIC\I MODEL

HOTFGM-2D is based on the geometric model of a heterogeneous composite with a
finite thickness H, and finite length L that is infinite in the Xl direction (see Fig. I). The
loading applied to the boundaries of the composite in the XrX, plane may involve an
arbitrary temperature distribution and mechanical effects represented by a combination of
surface displacements and or tractions. The composite is reinforced in the X2-X, plane by
an arbitrary distribution of infinitely long tibers oriented along the X\ axis, or finite-length
inclusions that are arranged in a periodic manner in the direction of the X\ axis. The
heterogeneous composite is constructed using a basic building block (P, q, r) (Fig. 2a),
consisting of eight subcells designated by the triplet (Ct.{f~'), (Fig. 2b). Each index Ct., [3, Y
takes on the values I or 2 which indica te the rela tive position of the given subcell along the
Xl, X2 and x, axes, respectively. The dimensions of the unit cell along the XI axis, db d2, are
fixed for the given configuration since this is the periodic direction, whereas the dimensions
along the X2 and x, axes or the FG directions, h'l"}. hI'll, and 1\'1, lr l• can vary from unit cell
to unit cell. The dimensions of the subcells within a given cell along the FG directions are
designated with running indices (j and r which identify the cell number in the X2-X3 plane,
where q and r remain constant along the Xl axis. For the remaining direction, Xb the
corresponding index p is introduced. Thus a given cell is designated by the triplet (P, q, r)
for an infinite range of p owing to periodicity in the XI direction. and for q = 1,2, ... , Nq

and r = 1.2..... N,. where N" and /\, are the number of cells in the FG X2 and X3 directions.
It is important to note that the unit cell (p. If. r) in the present framework is not taken

to be an RYE whose effective properties can be obtained through local homogenization, as
is done in the standard uncoupled micromechanical approaches based on the concept of
local aClion (Malvern. 1969). In fact. for fully nonuniform distributions of fibers or
inclusions in the X2-X, plane. no RVE can be identified. Thus the principle of local action
is not applicable at the individual celllcvel. req uiring the response ofeach cell to be explicitly
coupled to the response of the entire array of cells in the FG directions. This is what is
meant by the statement that the present approach explicitly couples the microstructural
details with the global analysis. and thus sets HOTFGM-2D apart from the standard
approaches found in the literature. The limitations of the standard uncoupled approach,
and the error that results from decoupling of the local and global effects, were recently
discussed by Pindera et al. (1994, 1995).

2.1. Outline 01 the solutiO/1 teclllli(jue
The solution of the thermomechanieal boundary-value problem outlined in the fore­

going is solved in two steps, following the general framework for the solution of the
corresponding one-dimensional thermoelastic problem discussed previously (Aboudi et aI.,
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Fig 2. (a) Three-dimenSional ,dlen1<ltll' (l[ a funell''lLI'" ~radcd composite in the x, and x,
directions Shll\\ll1g thc dil1lClblOns of thc h'I'll hllllLllnc bloc:k (h) of the composite.

1993). In the first step. the temperature JistrioullLln In e\ery cell is determined by solving
the heat equation under stead) -state conditIons Il1 each cell subject to the appropriate
continuity and compatibility conditions. The solutlnn to the heat equation is obtained by
approximating the temperature Ileld in each suocell nf a unit cell using a quadratic expansion
in the local coordinates \"1. \,;t, \" . centered at the suocel],s mid-point. A higher-order
representation of the temperature lield is necessary In order to capture the local effects
created by the thermomechal1lcal field gradienb. the I11llTostructure of the composite and
the finite dimensions in the FG directions. in contrast with previous treatments involving
fully periodic composite media which emplnyed linear expansions (Aboudi. 1991). The
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unknown coefficients associated with each term in the expansion are then obtained by
constructing a system of equations that satisfies the requirements of a standard boundary­
value problem for the given temperature field approximation. That is, the heat equation is
satisfied in a volumetric sense, and the thermal and heat flux continuity conditions within
a given cell, as well as between a given cell and adjacent cells, are imposed in an average
sense.

Given the temperature distribution in the functionally graded composite in the periodic
and FG directions, internal displacements. strains and stresses are subsequently generated
by solving the equilibrium equations in each cell subject to appropriate continuity and
boundary conditions. The solution is obtained by approximating the displacement field in
the FG directions in each subcell using a quadratic expansion in local coordinates within
the subcell. The displacement field in the periodic XI direction, on the other hand, is
approximated using linear expansion in local coordinates to reflect the periodic character
of the composite's microstructure along the XI axis. The unknown coefficients associated
with each term in the expansion are obtained by satisfying the appropriate field equations
in a volumetric sense, together with the boundary conditions and continuity of dis­
placements and tractions between individual subcells of a given cell, and between adjacent
cells. The continuity conditions are imposed in an average sense. This results in a coupled
system of equations involving the unknown coefficients in the displacement representation
for each cell.

An outline of the governing equations for the temperature and displacement fields in
the individual subcells within the rows and columns of cells considered in solving the
outlined boundary-value problem is given in the following. A detailed derivation of these
equations is presented in Appendices A and B so as not to obscure the basic concepts by
the involved algebraic manipulations.

2.2. Thermal analysis: problem formulation
Suppose that the composite material occupies the region Ixd < XJ, 0 ~ X 2 ~ H,

o~ X, ~ L. Let the composite be subjected to the temperature TT on the top surface
(X2 = H), TB on the bottom surface (x: = 0). TL on the left surface (Xl = 0), and T R on the
right surface (Xl = L). Also. letV" denote the number of cells in the interval 0 :::; X2 :::; H,
i.e.

"

II = I (h:'n +h~")).

Likewise. let iV, denote the number of cells in the interval 0 :::; x, :::; L. i.e.

')' (/:" + I~' ).
I

For q = 2, .... N" . I and r = 2. . . \'
r = I, iV, they are boundary cells.

the cells are internal. whereas for q = I, Nq and

2.2.1. Heat conduction equation, For a steady-state situation, the heat flux field in the
material occupying the subcell ('Xli;') of the (p, q, r)th cell, in the region defined by
I.y\') I :::; ~d,.ly~jill :::; ~h~'1) Iy\ 'I :::; UI". must satisfy:

(1)

where i'l = ?;i'.yj'), ?2 = (c(C,y~!II. (', = (-(cs''''. The components of the heat flux vector
q!,ji;1 in this subcell are derived from the temperature field according to :
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(2)

where k,P!! I arc the coefficients of heat conductIvity of the material in the subcell (alh), and
no summation is implied by repeated Greek letters in the above and henceforth. Given the
relation between the heat flux and temperature. a temperature distribution that satisfies the
heat conduction equation is sought subject to the continuity and boundary conditions given
below.

2.2.2. Hem jtln cOllrillllill' cOlltliliollS. The conlll1uity of the heat flux vector q(,!i;! at
the interfaces separating adjacent subcdls within the unit cell (p. (/. r) is fulfilled by imposing
the relations

'I', = 1/,' (3a)

'/' = (I" (3b),,- e

-- £/'// (3c)

In addition to the abO\e contlnUlty conditions \\llhin the (P. (/' r)th cell, the heat flux
continuity at the interfaces between neighboring cells must be ensured. The conditions that
ensure this are given by

'J :::::: '/ (4a)

'/- 1(' (4b)

i( I,ll
~, (/ (4c)

2.2.3. Thermal cOlllillllin cOlldiriolls. The thermal continuity conditions at the inter­
faces separating adjacent subeells within the cell (p. 'I. r) are given by relations similar to
the corresponding heat flux continuity conditions. \

r i r-'" , ,/ (Sa)

r" T' (5b)

r
i','1 = r

"
(5c)

while the thermal continuity at the Interfaces between neighboring cells is ensured, as in the
case of the heat flux field. by reqUlnng that

T "

1.,/ r (6a)

r l' (6b)

r = r (6c)

2.2.4. Boulldan cO/l(firio!l.l The tinal 'let of conditIons that the solution for the temperature
field must satisfy are the boundary conditions at the top and bottom, and left and right
surfaces. The temperature 111 the cell (p. I. r) at the bottom surface must equal the applied
temperature TH• whereas in the c\.'11 (p. V". r) at the top surface the temperature must be TT'
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TI'C"IIf'\," = TTL\")),

(7a)

(7b)

where I' = I, ... , N,.
Similarly, the temperature in the cell (p, q. 1) at the left surface must equal the applied

temperature TL, whereas in the cell (p. if. N,) at the right surface the temperature must be

TR ·

T(I/:1 i T ( ) ~(I 1 - - 1.
/

, I J
1'\"" .\, - C I (8a)

(8b)

where q = 1, ... ,1\'1"

Alternatively, it is possible to impose mixed-boundary conditions involving tem­
perature and heat flux at different portions of the boundary.

2.3. Thermal analysis: Solulion
The temperature distribution in the subcell (Y.~f') of the (p, q, r)th cell, measured with

respect to a reference temperature T,cl ' is denoted by r,fil. We approximate this temperature
field by a second order expansion in the local coordinates .\,:'1, .\,jIJ), and .\'fJ as follows:

I ( (, 1', hUlic \ I ( rrl2)
+ )\,1,'2 _ (,',,)TI'i-I + (,)\.1111' _ i l

__ ) Tix/i',J + - 3X.(",12 __;_ T(>{i;-)
~ ," ! 4. Icl'''' ~ _., 4 10201 2 . 1 4 (002), (9)

where T:~{~dl' which is the temperature at the center of the subcell, and nt;~~~ (I, m, n = 0,1,
or 2 with 1+ m + n ,,; 2) are unknown coefficients which are determined from conditions
that will be outlined subsequently. It should be noted that eqn (9) does not contain a linear
term in the local coordinates \"1'1 . This follows directly from the assumed perodicity in the
XI direction and symmetry with respect to the lines -"'(' = 0 fory. = I and 2.

Given the six unknown quantities associated with each subcell (i.e. nO~;;]I' ... ,no~J'M

and eight subcells within each unit ceiL 48 NqN, unknown quantities must be determined
for a composite with Nq rows and iV, columns of different materials. These quantities are
determined by first satisfying the heat conduction equation, as well as the first and second
moment of this equation in each subcell in a volumetric sense in view of the temperature
field approximation given by eqn (9). Subsequently, continuity of heat flux and temperature
is imposed in an average sense at the interfaces separating adjacent subcells, as well as
neighboring cells. Fulfillment of these field equations and continuity conditions, together
with the imposed thermal boundary conditions at the top and bottom, and left and right
surfaces of the composite, provides the necessary 48N/v, equations for the 48NqN, unknown
coefficients in the temperature fleld expansion. We begin the outline of steps to generate
the required 48NqN, eq uations by first considering an arbitrary (p,q,r)th cell in the interior of
the composite (i.e. q = 2, ... , N,! - I and I' = 2, ... , N, - I). This produces 48(Nq - 2)(N,- 2)
equations. The additional equations are obtained by considering the boundary cells (i,e,
q = I, N'I and I' = I. N,). For these cells, most of the preceding relations also hold, with the
exception of some of the interfacial continuity conditions between adjacent cells which are
replaced by the specifled boundary conditions.

2.3.1. H('aT conduction ('qualions. In the course of satisfying the steady-state heat equation
in a volumetric sense, it is convenient to deflne the fOllowing flux quantities:
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(10)

where I. 111. 11 = O. 1. or 2 \\ nh 1·+ III + II ~ 2. and \'!'~;i': = d,h;;/' 11
" is the volume of the subcell

(:x/h) in the (p. q. r)th cell. For 1=/1/ = II = O. Q;'~(;II"" is the average value of the heat flux
component q,lx1il in the subcel!. whereas for other values of (I. /1/. II) eqn (10) defines higher­
order heat fluxes. These flux quantities can be evaluated explicitly in terms of the coefficients
nl,f;~: by performing the required volume integration using eqns (2) and (9) in (10). This
yields the following non-vanishing zeroth-order and tlrst-order heat fluxes in terms of the
unknown coefficients in the temperature field expansion.

(JIll I i'.lil == -k' ,I!,. ""-+ T,. 11'1 (11 )

Q.;:;.,',,,, = -k.' r"", (12)

Q

-k (13)

(14)

Q' I,ll -k
I' r.

-+
(15)

Satisfaction of the zeroth. tirsl and second moments of the steady-state heat eq uation results
in the following eight relationships among the tirst-order heat fluxes Q,\~f;;';;) in the different
subcells (:xf3~') of the (p. (j. r)th cell. after some invol\ed algebraic manipulations (see Appen­
dix A):

= n. (16)

where the triplet (1./1',') assume, all pcrmutation~ ,)1 the llltegers I and 2.

2.3.2. HCUI fillY 'Olililil/111 ('(jIlUlioIiS. The continuity of heat fluxes at the subcell
interfaces associated with the periodic \1 directIOn. eqn (3a) imposed in an average sense,
is ensured by :

, d'i , == n (17)

We note that eqn (4a) that ensures continuity of heat nux in the \, direction between
neighboring cells is identically satisfied by the chosen temperature field representation
owing to the periodicity of the composite III this direction

The equations that ensure heat flux continlllty at the subcell interfaces, as well as
between individual cells. assol'iated with the \ and \ directions. eqns (3b. c) and(4b. c)
are given by

'- [Q~;~ (18)

(19)

(20)
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[ ~QDiill +I(QD/I:J ~6QI'!i:' I )]'I"I"+~[QD/121 +6QD/!21 ,I ]'l'.q.r-I) - 0 (21)
JIO,O.()1 ~ '\(O.O.O)\(O.II.1J,' 2, 1: )(0.0.0) 3(0.0.1)/ "2 - •

Equations (17)·(21) provide us with 20 additional relations among the zeroth-order and
first-order heat fluxes. These relations. together with eqn (16), can be expressed in terms of
the unknown coefficients T,I/~f:;;: by making use of eqns (11 )~(l5). providing a total of 28 of
the required 48 equations necessary for the determination of these coefficients in the
(p. q. r)th celL

2.3.3. Thermal continuitl equotions. An additional set of 20 equations necessary to
determine the unknown coefficients in the temperature field expansion is subsequently
generated by the thermal continuity conditions imposed on an average basis at each subcell
and cell interface. 1mposing the thermal continuity at each subcell interface in the periodic
XI direction. eqn (5a), we obtain the following conditions for the (p.qJ)th cell:

[Till!' I I' "7" I, ']
{OOll, + l i l:!llil

_ [T,:!I.> I IC Tlc/i',1 ] (p·II"
- (000) + 4( 1: (2(H)) . (22)

We note that the continuity of temperature hetween neighboring cells in the XI direction,
eqn (6a). is automatically satisfied by the chosen temperature field representation which
reflects the periodic character of the composite in this direction.

The continuity of temperature at the interfaces between the subcells. as well as between
the neighboring cells. in the FG directions. eqns (5h.c) and (6b,c), on the other hand, yield

[T" I, + 'I 7'171,' II: 7'" I I'i"'!" _ [T'7:, I II TI7c . I + l/C TI7:,I] (p.,!.,)
1,0001 =11 lOllll+-lll 111.:'111 '- 1()()111-2" 12 (010) 4 7]: 1(20)

[T":'! 'I TI'::J I/:T'" ']'1""" - [TI71:1 II T'71:'j Ihc TI71:1]lp.'I+I.'·)
- (OOU!+=1 2 IOlll}+-t12 1112(1) -- - 111(0)- i11 (010)+4" 1 (010)

[T lc/':) + II Tl7/fcl + II: 7"1'!2 ] '1"'1" ~ [Tix/II) _ II T(7/fl) + 1/2 TI,I! I I] (1"'1·' II] I
_ {UDol '2 '2 101)11 -+ =. IIHI,': - IOllOI '2 1 (0011 4 1 ((JO]:)

Equations (22)(26) comprise the required additional 20 relations.

(23)

(24)

(25)

(26)

2,3.4. Gorerning equations luI' Ihc unk11l1\l'II coefficients in the temperature expansion.

The steady-state state heat equations, eqn (16). together with the heat flux and thermal
continuity equations. eqns (17) (21) and (22)-(26). respectively, form altogether 48 linear
algebraic equations which govern the 48 field variables Tgf:;,: in the eight subcells (af3y) of
an interior cell (p, q, r) : q = 2. ' .. ''V'i- I. r = 2.... , lV, ~ I. For the boundary cells q = 1,
lVq • and r = I. .'II,. a different treatment must be applied. For q = I, the governing equations,
eqns (16) (17) and (20)-(26) are operative. Relations (18)-(19). on the other hand, which
follow from the continuity of heat flux between a given cell and the preceding one are not
applicable. They are replaced by the condition that the heat flux at the interface between
subcell (ex I;') and (:x2;) of the cell (p. I. r) is con tin uous, as well as the applied temperature
relation at the surface -': = O. eqn (7a). For the cell q = lV,1' the previous equations are
applicable except eqns (24) which are obviously not operative. These equations are replaced
by the specific temperature applied at the surface X: = H, eqn (7b). Similar reasoning holds
for the subcells I' = I and r = N,.

The governing equations at the ulterior and boundary cells form a system of 48NqN r

linear algebraic equations in the unknown coefficients Tgf:;,!. Their solution determines the
temperature distribution withltl the FG composite subjected to the boundary conditions
(7) and (8). The final form of thi~ ~:stem of equations is symbolically represented below

KT = t. (27)

where the structural thermal conductivity matrix K contains information on the geometry



FUllc!lollall" graded CPIl'[)(l"lcs 941

and thermal conductivities of the individual subcells (x/I;') in the N"N, cells spanning the X2

and X3 FG directions. the thermal coefficient vector T contains the unknown coefficients
that describe the thermal field in each subcell. i.e, T = ITt{,;,,\,')), ... ,T!I;':I1~)] where
TW;;,\ = [T{oool' T,o) 0,. Tltll) I,. T,c')(),' T,0201' T'iI''''] '71i . and the thermal force vector t contains
information on the boundary conditions.

2.4. Alechanica/ mw/rsis: proh!em!()rlJlll/alion
Given the temperature field generated by the applied temperatures TT' TB, and TL, TR

obtained in the preceding section. we proceed to determine the resulting displacement and
stress fields. This is carried out for arbitrary mechanical loading applied to the surfaces of
the composite in the X2-'\' plane. excluding shearing in the x) direction.

2.4.1. Equalions ojeqlli/ihriulJI , The stress field in the subcell (ry,{J() of the (p,q,r)th cell
generated by the given temperature field must satisfy the equilibrium equations

II. I~ I. 2. J. (28)

where the operator (e, has been defined previously. The components of the stress tensor,
assuming that the material occupying the subcell (y./I;') of the (p. q. r)th cell is orthotropic,
are related to the strain components through the familiar generalized Hooke's law:

'_.. r:.'" 'T' (29)

where are the elements of the stiffness tensor a nd the elements f,'t ll;) of the so-called
thermal tensor are the products of the stiffness tensor and the thermal expansion coefficients.
The components of the strain tensor in the mdlvidual subcells are. in turn, obtained from
the strain displacement relations

1.2. J (30)

Given the relation between stresses and displacement gradients obtained from eqns (29)
and (30). a displacement field is sought that satisfies the three equilibrium equations together
with the continuity and boundary conditions that 1'0110\\

2.4.2. Tractioll colllinuitr condilions. The contll1utty of tractions at the interfaces sepa­
rating adjacent subcells within the unit cell (p. (!- r) IS fulfilled by requiring that

!T'
,/

- !T (3Ia)

(Jli
"

!T.
:>_' (31 b)j.

I C'.'
-

(J \.1/" (.lIe)

In addition to the above continuity conditions within the (p. (/. r)th cell, the traction con­
tinuity at the interfaces between neighboring cells must be ensured. These conditions are
fulfilled by requiring that

(32a)

(32b)

(32c)
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2.4.3. Displacement continuitr ('onditions. At the interfaces of the subcells within the
unit cell (P, q, r) the displacements u = (11 1.112,11,) must be continuous,

u I1 /1',11 ,= ul'li'll (33a)

(33b)

U I :1/11.1 1

{~' 2'
(33c)

while the continuity of displacements between neighboring cells is ensured by requiring that

(34a)

(34b)

Ul-x/;II . II (34c)

2.4.4. Boundary conditions. The final set of conditions that the solution for the
displacement field must satisfy are the boundary conditions at the top and bottom, and left
and right surfaces. The traction vector in the cells (p, I, r) and (p, Nq , r) at the bottom and
top surfaces, respectively, must equal the applied surface loads,

Dl Iii I = I~,(x,),
-I I I

= - ~hlll (35a)(j 2/ x: 2 I

'I!' \ = Ir,(X,). "(I: I = ~h~N'il (35b). '

where r = I, ... , :\, h, and fB' descri be the spatial variation of these loads at the top and
bottom surfaces. Similarly, if the right or left surfaces are rigidly clamped (say), then

LI,' "I",;I,=(), ~ill_ 11111
.\, - -:; I (36a)

'j'i"! \, = 0, (36b)

where q = 1, ... , Nq .

For other types of boundary conditions. eqns (35)-(36) should be modified accordingly.

2.5. Mechanical anahsis: solutioll
Owing to symmetry considerations, the displacement field in the subcell (rxf3y) of the

(P, q, r)th cell is approximated by a second-order expansion in the local coordinates xl'),
.'\'1./1, and ."(l' I as follows:

I (~-.1'l12 Id2 ) WI,{i:'1
1+: .1.\ I - =I > 2(200)

+ 1 (3 \-.1/112 _ ~/7Iq)2) WI'lII:) + ~ (3 X-I))2 _ ! l(r)2) w(a{iy)
: ., 2 4 II 2(020) 2 . 3 4 )' 2(002)

11 VII: 1 - IA/I'lli',I + -,({I) 'VI'll", I +~' ,'I II" 'll!, i l (3 ~1'l)2 I d 2 ) WI'll!;')
3 - rr .110001 .\: rr'IOIO, .\, rV '10111 i + 2 ,\ I - =I ' 31200)

where W!tlob) ,which are the displacements at the center of the subcell, and Wi\l~;~) (i = 1,2,3)
must be determined from conditions similar to those employed in the thermal problem. In
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this case, there are 104 unknown quantities in the (p. i/. r)th cell. The determination of these
quantities parallels that of the thermal problem. Here. the heat conduction equation is
replaced by the three equilibrium equations, and the continuity of tractions and dis­
placements at the various interfaces replaces the continuity of heat fluxes and temperature.
Finally, the boundary conditions involve the appropriate mechanical quantities. As in the
thermal problem. we start with the internal cells and subsequently modify the governing
equations to accommodate the boundary cells q = I. S", and r = I. N,.

It should be noted that the first equation in (37) does not contain linear terms in the
local coordinates .X~!i' andx\'. This follows from the assumed periodicity in the XI direction
and symmetry with respect to ,x!" = 0(7 = 1.2). Furthermore, the absence of a constant
term in the first equation that represents subcell center\'I-displacements, say Wl';g16o ), leads
to the result that the average normal strain of the composite associated with the XI direction
is zero, It is possible to generalize the present theory by including subcell center dis­
placements associated with the XI direction that produce uniform composite strain 811 , This
generalization leads to an overall behavior of a composite. functionally graded in the X 2

and x-' directions. that can be described as a generalized plane strain in the XI direction.
This generalization is not trivial as it requires coupling between the present higher-order
theory and an RYE-based theory which employs a homogenization scheme (Aboudi et al.,
1995b). In Section 2.5.5 we briefly outline how the present formulation can be modified to
admit generalized plane strain in the X Idirection in order to he able to carry out comparison
between HOTFGM-2D and finite-element analysis

2.5.1. Equations ojequilihriul11. In the course of satisfying the equilibrium equations
in a volumetric sense. it is convenient to define the follo\\iing stress quantities:

(38)

For / = 111 = n = O. eqn (3S) prOVides average stresses In the subcell, whereas for other
values of (I, m, n) higher-order stresses are obtained tha t are needed to describe the governing
field equations of the higher-order continuum. These stress quantities can be evaluated
explicitly in terms of the unknown coefficients ~V(i";::":' by performing the required volume
integration using eqns (29), (30) and (37) in egn US). This yields the following non­
vanishing zeroth-order and first-order stress components in terms of the unknown
coefficients in the displacement field expansion:

(39)

(40)

(41 )

with similar expressIOns for S','!:, iJ II.

and
I". S' . and

S'''!I , ~ ! /'

" I ~(!II,(l1 - -l- ( J 'II (42)

S"• I

,,,)

(43)

(44)

'If (45)
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(46)

Satisfaction of the equilibrium equations results in the following sixteen relations among
the volume-averaged first-order stresses 5'(IW;':1I1 in the different subcells (rxl3-l') of the (P, q, r)th
cell, after lengthy algebraic manipulations (see Appendix B) :

(47)

where! = 2, 3 and, as in tht: case of eq n (16), the triplet (rxf3}') assumes all permutations of
the integers I and 2.

2.5.2. Tractioll continuitr eqUaTions. The continuity of tractions at the subcell interfaces
associated with the periodic ,\', direction, eqn (31a) imposed in an average sense, is ensured
by the following relations:

[5\

(48)

(49)

(50)

We note that eqn (32a), which ensures continuity of tractions between adjacent cells in the
periodic X, direction, is identically satisfied by the chosen displacement field representation
owing to the periodic character of the composite material in this direction.

The equations that ensure traction continuity between individual subcells, as well as
between individual cells. associated with the X2 and X J directions, eqns (31 b,c), and eqns
(32b,c), are given by

[ 5 "':" + 1('1>2;1 '5<>"/ ]11"1" + '['5,,2: 1 65(>2';)'h ] (I'.q -I.,') - 0
- 2J(O.O'()) 2~.J2/((UUJl-_l .::'/(0.1.1l1 l~ 2" I. ~r{n.o.cl)+ 2)(0,1.0)/ 2 - (52)

(53)

+ '[5~'1121 . +65(>112 ) It ](/"'1.,--1 1 = 0
2 _'!fO.O.Of 3}(O.O,I)1 :2 (54)

wherej = 2 and 3.
Equations (48)-(54) provide us with 44 additional relations among the zeroth-order

and first-order stresses. These relations, together with eqn (47), can be expressed in terms
of the unknown coefficients W!I~;;;/;! by making use of eqns (39)-(46), providing a total of
60 of the required 104 equations necessary for the determination of these coefficients in the
(p.q,r)th cell.

2.5.3. Displacement continuill equations. The additional 44 relations necessary to deter­
mine the unknown coefficients in the displacement field expansion are subsequently obtained
by imposing displacement continuity conditions on an average basis at each subcell and
cell interface. The continuity of displacements in the periodic XI direction at each subcell
interface of the (p. q. r)th cell. eqn (33a). is satisfied by the following conditions:

[ '1"'11.1 1 ,211" li>.1 'UI2!1:1 1 d 2 W(2P;') ] (p.q./') - 0
rr 2({)()O) + 4( 1 vr ~(2()O) - rr 2(000) -.4 2 2(200) -

(55)

(56)
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(57)

The displacement continuity between neighbonng cells JI1 the periodic XI direction, eqn
(34a), is automatically satisfled hy the chosen displacement field representation which
reflects the periodic character of the composite In this direction.

The displacement continuity conditions at the inner surfaces. eqns (33b,c), as well as
between neighboring cells. eqns (34h.c). in the FG \' and x; directions, yield

[ vV_~',/,:,(I'«I,~·'1 IV'" -r/,'/I' ",-II
, =' i ' ~ I f II) I -t

t Ii II Ill] 1h~ r+'i'17iio)] li'·<I') = 0 (58)

), 11"71 I +lhCr+/I'l';1 ]IP."']"·) (59):' (l,1 I () I -4 I 2(020)

. Iii II '._ 'I' W1'lC, 1 ] Ip.q.r] = 0 (60){II -I. 1'.:'. 1, (020)

h II ' '.' h' vV 1X I I') ] 1".'1+ 1.'1 (61 )] II) + -.; I ~(O20)

~ / IV' ' __ I I' VV'7/ic) ] Ip.".,) = 0 (62)I ) 4 ~ 2(()()2)

- H'

- Ii

=[H'"

=[H

[
TIllY I, ) I I '1'(' I. + I I "11" I
J"J-',[()fl()1 +,1

1
'" .~,:I, I fll -t 7 1 "

=lli (63)

- 'r IV IY'1C ) ] 1".".'1 - 0 (64)
I .+ ~,(O()2) -

,,[ =lli (65)

Equations (55) (65) comprISe thc reqUIred addIlllJnal44 relations.

2.5.4. CocemilU! ei/l/IlIlIillS luI' the 1111/';/10)\11 (Oetl/dell/.\ i/l the displacement expansion.

The eq uilihrium equa tions. eqn (47). together with thc traction and displacement continuity
equations. eqns (48H54) and (55)-(65), respectively. altogether form 104 equations in the
104 unknowns Ii;!);;,,:, which govern the equilibrium of a subcell (7.lh') within the (p, q, r)th
cell in the interior. As in the thermal problem, a different treatment must be adopted for
the boundary cells (p. 1.1'). (p . .\,. rl. and (p. LJ. I) and (p. (f. S,). For (p, I, r), the above
relations arc operative. C.\l'Cpt eqns (51) and (52). \\hlch follow from the continuity of
tractions between a gIven cell and the preceding one These eight eq uations must be replaced
by the conditions of continlllty of tractions at the intenor interfaces of the cell (P, I, r) and
by the applied tractions at\1 = O. eqn (35a). For the cell (p. ,V,I' r). the previously derived
governing equations are operative except for the four relations given by eqns (59) and (61)
which are ohviously not applicable. These are replaced by the imposed traction conditions
at the surface Xc = H. eqn (35h). Similar arguments hold for boundary cells (p,q, I) and
(p, q. /II,.). Consequently. the governing equations at hoth interior and boundary cells form
a system of I04:\,.v linear algehraic equations In the tJeld variables within the cells of the
functionally graded composIte. The tinal form of tillS s~ stcrn of equations is symbolically
represented hehm

Kl = f. (66)

where the structural stIn'ness matnx K contains information on the geometry and thermo­
mechanical properties of the individual subcells (7./1;) within the cells comprising the
functionally graded composite. the displacement coetliclent vector L contains the unknown
coefficients that descrihe thc displacemcnt field in each suhcel!. i.e. U = [U((/~nln])I, ... , U!l,;n~)]

where l;'!';;;,: = [W i!'"'''' .. Il I '>lilJ" '. and the mechanical force vector f contains infor­
mation on the boundary cllndltions and the thermal loading ctrects generated by the applied
temperature.
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2.5.5. Extension to generuli:ed plane strain ill the Xl direction. As indicated previously,
the present formulation in which the displacement components within the subcell (rxf3y) of
the (p. q. r)th cell are expanded in accordance with eqn (37) leads to the result that the
strain 0:\'(11 averaged over the entire volume V = (dl +d2)HL occupied by the functionally
graded composite is zero.

, I

(67)

It is freq uently desirable to obtain a generalized plane strain situation where ell = non-zero
constant. This can be achieved by adding a constant term to the first equation in (37) and
applying a homogenization procedure in the VI periodic direction. It can be shown that the
only equation affected by this process is eqn (55) which must be replaced by (Aboudi et al.,
1995) :

(68)

where ell is an unknown value that must be determined from the condition that iT!1 = 0,
where iJ II is the average of a\'/' I ()\cr the entire volume of the composite:

(69)

1. APPLICATlO,,<S

The approach outlined in the foregoing is employed to investigate the response of a
symmetrically laminated B Ep-Ti plate subjected to a uniform temperature change of
- 154.45 C. This temperature change simulates cool down from the fabrication temperature
which induces residual stresses into the individual plies owing to a thermal expansion
mismatch between the boron/epoxy and the titanium plies. The residual stress fields exhibit
large gradients near the free edges of the laminate which were investigated by Herakovich
(1976) using the finite-element approach. Herein. we first compare the finite-element results
for the stress fields near the free edge with the predictions of HOTFGM-2D. treating the
boron/epoxy (B/Ep) plies as homogeneous with equivalent effective (or homogenized)
properties. This comparison demonstrates the capability of the new coupled theory to
capture large gradients in the stress flelds at geometric and material discontinuities (i.e.
along interfaces at the free edge of a laminated plate) in the presence of a spatially uniform
temperature field. Subsequently. the effect of microstructure of the BIEp plies on the free­
edge fields is investigated in view of the large diameter of the boron fibers and relatively
small thickness of the REp plies. Finally. the utility of nonuniformly distributing (i.e.
functionally grading) boron fibers in the BEp plies near the free edge to reduce the large
stress gradients in this region is demonstrated.

The cross-section geometry of the investigated laminate is given in Fig. 3. The thickness,
designated by H in the figure. and the width L produce a laminate with an aspect ratio of
L.H = 12.5. The direction of the boron fibers in the external B/Ep plies is parallel to the XI

(out-of-plane) axis. along which the laminate is considered to be infinitely long. The volume
fraction of the fibers is 0.50. The resulting macroscopic thermo-mechanical properties of
the BIEp plies and the titanium inner sheets are given in Table 1. As in Herakovich (1976),
these properties are considered to be temperature-independent. Comparison of the thermal
expansion coefficients of the BiEp plies and the titanium sheets reveals a significant mis­
match in the transverse direction (along the x, axis). with a smaller mismatch in the
out-of-plane direction. Figure 4 illustrates the axial and transverse thermal expansion
coefficients. ~d and rx¥. respectively. of the BEp ply as a function of the fiber content VI

generated using the method of cells micromechanics model (Aboudi. 1991). Included in the
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Table I. Material properties of the boron epoxy plIes 1\ = (50) and titanium sheets
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Material Et (GPa) Ef (GPal 1'* :t~ (!O C 'I.,

B/Ep 206.8 18.6 021 4.5
Ti 118.6 118.6 0.34 8.5

Subscripts A and T denote aXial and transverse Ljuantitlcs. respectIvely

60
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30.6
8.5

to-we 30

'-.

a A' ""20
,//

, ./ Titanium
\/

10

0.0 0.2 0.4 0.6 0.8 1-0

VI

Fig. 4. Effective norma! and transverse thermal expansIOn coefficients of BiEp as a function of the
fiber volume fraction. Also shown 10 the figure is the CTE of the isotropic titanium sheet.
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Table 2. Matenal properties of boron fiber and epoxy matrix

\1aterial

Boron tiber
Epoxy matnx

E (GPa I

41 i()

524
OU
()35

6.0
50.0

E and r denote the Young's modulus and Poisson's ratio. respec­
tively. and x is the coefficient of thermal expansion.

figure is the thermal expansion coefficient of the isotropic titanium sheet. The thermoelastic
properties of the boron fibers and the epoxy matrix used to generate this figure are given
in Table 2. The graphical results shown in Fig. 4 indicate that the large thermal expansion
mismatch between the B/Ep and the Ti plies in the transverse direction (i.e. X3) can be
reduced by increasing the fiber content of the B/Ep ply above the current value of 0.50. It
is expected that the reduction of the transverse CTE mismatch will lead to a decrease in the
transverse residual stresses and thus the severity of the free-edge stress gradients. Figure 4
thus provides a motivation for using functionally graded fiber architectures in the vicinity
of the free edge to decrease the transverse thermal expansion mismatch in this region, and
thus reduce the interlaminar stresses. Since the interlaminar stress field is a localized effect,
it is reasonable to expect that it is sutI1cient to limit grading of the fiber content in the B/Ep
plies to the immediate vicinity of the free edge.

3.1. Comparison o/HOTFGi\·-t-2D allli FEprcdiclions hascd on homogenized BIEp properties
Figure 5 presents comparison of the normal (0"11, 0"22, 0"33) and shear (0"23) stress

distributions in the titanium sheet along the interface separating the B/Ep and Ti plies (see
Fig. 3) generated using HOTFGM -2D and the finite-element analysis of Herakovich (1976).
These results were obtained using the effective or homogenized thermo-mechanical proper­
ties of the B/Ep and Ti plies given in Table I. As stated previously, the illustrated stress
distributions were induced by subjecting the [B/Ep-Ti], laminate to a uniform temperature
change of - 154.45 C. Since the interfacial traction continuity conditions are imposed in
an average sense in HOTFGM-2D. the stress components which are tractions along an
interface are averaged as ""ell. Hence the stress components 0"22 and 0"23 in a given subcell
(1.fJ~') of the cell (p. q. r) obtained from the higher-order theory were calculated as follows:

(J.., ,

d)
I' .

The stress components 0"\'( ) and '. on the other hand, were not averaged.
The finite-element results were generated using three different meshes, indicated by

B-1, B-2 and B-3 in the figure. with each successive mesh undergoing increasingly greater
refinement until satisfactory convergence was obtained. Due to the symmetry of the con­
sidered plate with respect to they, and \ ; axes. only one quarter of the plate needs to be
analysed (see Fig. 3) under appropriate boundary conditions which reflect these symmetries.
The higher-order theory results were generated by discretizing the quarter-plate in the
manner shown in Fig. 6. The level of discretization at the free edge shown in this figure was
determined by performing a convergence study in which increasingly greater number of
subcells was introduced into the region immediately adjacent to the free edge, defined by
0.49L ~ x; ~ 0.5L (see Fig. 6). starting with two subcells and ending with 100 subcells.
Figure 7 illustrates the relatively rapid convergence of the maximum normal stresses 0"22

and 0"11 (in the titanium ply) along the lJ1terface at the free edge with increasing number of
free-edge subcells. Similar results \vere obtained for the remaining stress components,
thereby justifying the employed level of discretization shown in Fig. 6.

The stress profiles presented in Fig. 5 exhibit large stress gradients in the immediate
vicinity of the free edge. Away from the free edge, these stress distributions attain uniform
values that can be predicted using the classical lamination theory for sufficiently large LIH
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aspect ratios. The rapid deca~ of the lI1teriaminar ,;tresses to their lamination theory or far­
field values occurs over a distance that is approximate/\ lme laminate thickness H from the
free edge. The far-field values of the normal stresses (), I' er". and (Jl1 predicted by the coupled
higher-order theory are 11).1). O.U. and -- 54.1)5 MPa. respectively. The far-field value of the
shear stress er: 1 is 0.0. These results coincide wah the lamination theory predictions.

In the vicinity of the free-edge. the large gradient and magnitude of the (JII stress
component obtained from the coupled higher-order analysis compares very favorably with
the finite-element results generated with the most refined mesh. The behavior of the 0"2:

stress component near the free edge predicted b~ the higher-order theory also compares
favorably with the finite-clement results. lying between the B-1 and B-3 mesh predictions.
This component is often responsible for delamination 1l11tiation at the free edge when it is
tensile. as is the present sItuation. The normal stress component (In is in the direction of
the free edge and thus has to vanish on the lateral surface \1 L = 0.5. Both the higher-order
theory and finite-element predictions indicate that tim stress component does tend to zero
with decreasing distance from the edge. The finite-clement results indicate an initial decrease
in this stress component relative to the far-field value l1.e. an increase in the magnitude of
the compressive stress) followed by rapid reversal and decay to zero. The magnitude of this
initial decrease predicted by the HOTFGM-1D aiLlivSIS. however. is substantially smaller
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relative to the finite-element predictions. On the other hand, the magnitude of the normal
stress a" in the immediate vicinity of the free edge is closer to zero than that predicted by
the finite-element analysis using the most refined mesh (B-3). Finally, the comparison of
the shear stress components a23 predicted by the two approaches is also favorable. This
stress component also undergoes a rapid reversal at the free edge, initially decreasing
(i.e. increasing in magnitude), then reversing direction and rapidly decaying to zero. The
magnitude of the maximum shear stress at the reversal point predicted by the coupled
higher-order theory is somewhat smaller than that predicted by the finite-element analysis.
On the other hand, the shear stress at the free edge predicted by HOTFGM-2D is much
smaller (in fact almost zero) than that predicted by the finite-element approach.

The comparison of the stresses in the titanium sheet at the B/Ep-Ti interface generated
using the HOTFGM-2D and finite-element approaches indicates that the major features of
the near free-edge stress fields are correctly captured by the coupled higher-order theory.
While in some instances the actual magnitudes are not in perfect agreement, it is not clear
at this point whether the problem lies with the HOTFGM-2D or finite-element results since
the discrepancies, when they occur, are not sufficiently consistent to point to either of the
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Fig. 6. Quarter-plate \olume discretization used tll generate the HOTFGM-2D results.

two approaches as a potentIal culprit. It is clear, however, based on the presented compari­
son, that the coupled higher-order theory is sufficiently sensitive to capture the large stress
gradients, and even rapid stress reversals (see O'c3 distribution in Fig. 5) that occur in regions
of geometric discontinuities such as the free edge. It is also reassuring that convergent
results can be obtained with a sufficient level of volume discretization. This sets the stage
for investigating the effect of microstructure on the free-edge stress fields (using the quarter­
plate discretization shown in Fig. 6).

3.2. Effect olmicrostructure ojthe B/ /:..p plies on tllt'Fee-edge stress/le/ds
The results presented heretofore have been generated by treating the BIEp plies as

homogeneous with certain effective or homogenized thermo-mechanical properties. These

Fig. 7. Convergence behavIOr of the maximum normal stresses (1" and (1" (in the titanium ply) at
the B/Ep-Ti interface In the subcell next to the free edge as a function of the number of subcells in

the free-edge region O.49L os: x 'S.O.S!-
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properties can be either measured directly in the laboratory or determined using a micro­
mechanics scheme when macroscopically homogeneous deformation fields are imposed.
However, when the reinforcement size (i.e. fiber diameter) is large relative to the thickness
of a composite ply, which is the case with boron-reinforced and silicon carbide-reinforced
composites, the meaning of material property becomes fuzzy in the presence of large stress
gradients as previously discussed. This is the case in the present situation at the free edge
given the large boron fiber diameter relative to the thickness of the BIEp ply. It is thus
important to characterize the error introduced in the analysis of free-edge stress fields based
on the homogenized properties of the B Ep ply.

Figure 8 illustrates eight configurations of the [B;Ep-TiL laminate with increasingly
refined microstructure of the BIEp plies at the free edge that were investigated in order to
determine the effect of the microstructure on the stress fields. The overall dimensions of the
laminate and the individual plies are the same as in the previous problem with homogenized
BIEp properties. The number of boron fibers in the through-thickness direction of the BIEp
plies was taken as two, and the fiber dimensions were chosen to yield the same fiber volume
fraction of 0.50 as in the previous problem. The properties of the boron fiber and epoxy
matrix reported in Table 2 produce the same homogenized properties for the BjEp plies as
those employed previously. These properties were assigned to the fiber and matrix phases
in the regions of the BIEp plies shown in Fig. 8 with increasingly refined microstructures.
Outside of those regions, homogenized thermo-mechanical properties were employed for
the BIEp plies.

Figure 9 presents the normal stress (J22 in the titanium sheet at the B/Ep-Ti interface
for the eight configurations shown in Fig. 8. This stress component, due to its tensile

r
H/2

1

I

H/2

1

ri/2

epoxy matrix boron fiber

r .BiE .

H/2

I•

• • ••
• • • •

Fig 11 Schematic of eight configurallOns of the [B Ep-Ti], laminate showing increasingly refined
microstructure at the free edge.
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character, is responsible for the lllitiation of delamination. and thus is of particular import­
ance for the considered configuration subjected to the given thermal load. Examination of
the individual figures for each confJguration reveals an increasingly complex character of
the stress distribution near the free edge with increasing refinement of the microstructure
that is due to the interaction with the indivIdual boron fibers in the adjacent BIEp ply. The
stress distributions are characterized by rapid oscillations that coincide with the locations
of the boron fibers in the B, Ep plies directly above the titanium sheet. The reversals in the
sign of the stress oscilla tions could potentially have an effect on the delamination process.
More importantly. however. the maximum normal stress at the free edge increases with
increasing refinement of the microstructure. This tS c1earl) illustrated in Fig. 10 where the
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Fig 9. "ormal stre" r7 d"tnhullons in the titanium ph at the interface separating BiEp and Ti
plies due to a tempera! Ufc' chan,!c df '" J ~ I~4.4~ C fdr the eight configurations of Fig. 8.
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maximum stress (J"2 at the free edge for the eight different configurations has been nor­
malized by the corresponding stress obtained from the HOTFGM-2D analysis using homo­
genized B/Ep properties. As is observed, the actual maximum stress at the free edge in the
presence of microstructure asymptotically approaches a uniform value with increasing
number of fiber/matrix cells in the B/Ep ply at the free edge. At least seven cells are required
in the horizontal direction at the free edge to capture the actual maximum value of (J22 in
the titanium ply. More importantly, the actual maximum stress is 35% greater than the
corresponding stress obtained using homogenized properties of the B/Ep plies. This is a
significant difference that cannot be overlooked in predicting the onset of delamination,
revealing the shortcoming of the homogenized continuum approach in the presence of
course microstructure and large stress gradients.
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Fig. 10 :\ormdlll~d md\lmUll1 ,lr~" (J •. ll1the titanium pll ,It the free-~dge olthe laminate at the
interface separating B [r and 11 piles O\ling 10 a temperature l'hdng~ of /"7 = - 154.45 C as a
function of the relined microslruclur~ for the eight l'ontigUrdllllll' of Fig. X. The normalization is
performed II ith respect I,) the corresponding ma~ll1lllm s(r,'" uhl<lined f;'om the analysis based on

tH)ll1()g('nill~d R Fp I'r~)~'ll.'I·lll"

3.3. Dl:'!aminatioll (oiltroltimull/Ii lIli(rol/mClllr"lrut!orincj oj tlie B Eli plie.1
As illustrated in the preceding sections, the large thermally induced interlaminar

stresses in the vicinity of the free edge. and in particular the large tensile normal (Tee stress
commonly called pee/I/ress. may be suf1iciently large to initiate delamination during
fabrication cool down or subsequent mechanical lnading. It is of technological interest to
reduce this stress component in nrder to 1t1crca~l' the load-bearing capability of such
laminates. In this section we inveslIgate the po~sibtlity nf accnmplishing this through the
use of functionally graded architectures in the B Fp plies

We choose two apprnaches to reduce the peel stre" at the free edge. In the first
approach. we selectively remO\e tiher~ from the B II' plie" in the VIcinity of the free edge
in order to create a local clamping in the \ertlcal dlrectinn at the lateral surface of the
laminate. It is presumed that this localized clampll1g arises from the tendency of the matrix
phase to contract mnre than the surrounding B Ep material under the given temperature
change. and that the contraction in the vertical direelInn has a greater effect on the stress
field than the contraction in the horizontal direction. Since eight fihermatrix cells in the
B/Ep plies at the free edge are sufhcientto capture the actual stre" field in the presence of
microstructural details (sec Fig. 10). we use this LllnJiguration to test the hypothesis
described above Figure I I presents the interbmll1ar peel stress profiles generated by
removing one and two columns Df tihers ll1the VJcl11ity nfthe free edge. Figure 11 a illustrates
the interlaminar peel stress distribution for the ha"clil1L~ cight-cell configuration with no
columns of fibers remoYCd. while Fig. II b d presenh the corresponding distributions for
the configurations with column 1. columns 3 and 4. and columns 2 and 3 removed. The
results indicate that the removal of the columns of tiber, generally tends to lower the normal
peel stress in the regions directly below thc missing tibers Furthermore, the magnitude of
the compressive stress in the cells adjacent tl) the free edge IS eliso increased. However. the
maximum tensile stress at the free edge ihelf is ac.'tuall:- increased when the fibers are
removed. This is illustra ted in Fig. 11 whIch presen h 1ht' maxIm um free-edge peel stress in
the configurations with the missing libel'S nonn~I1J/ed \\Ith respect to the corresponding
value of the baseline configuration given in Fig. Ila. The greatest increase in the maximum
value of the free-edge peel stress occurs in the configuratIon with the columns 2 and 3
removed. while the smallest increase occurs in the configuration with the columns 3 and 4
removed. Thus it arrears that the increased tendcncy elf the matrix with the missing fibers
to contract in the verllcal dircction is more than offset by the horizontal contraction
tendency. The O\erall ctfect is to lI1crea~e the thenmtl expansion mismatch between B;Ep
and Ti plies in the horizontal directIon. resulting in the: Increase of the maximum peel stress
at the free edge.
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FIg. 1J Effect ot removing tiber, near the free-edge of the laminate on the normal stress 6"

distnbution In the titaniulll pl\ at tile' Interface separating B Ep and Ti plies owing to a temperature
dl'lllgeofc\T= 154.45 C

The above exercise also sheds light on the dfect of imperfections in fiber spacing near
the free edge that may arise due to poor fiber placement control during fabrication. The
results suggest that a localized increase in the thermal expansion mismatch between adjacent
plies caused by missing fibers near the free edge will have a detrimental effect on the
laminate's delamination resistance.

In the second approach used to red uce the interlaminar peel stress at the free edge, the
fiber spacing in the horizontal direction ""as decreased in a linear manner with decreasing
distance from the free edge. This effectively increases the local fiber volume fraction in the
REp plies which. in turn. dccrea~e~ the trans,,:rsc thermal expansion mismatch between
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~ fibers #3 and #4 removed

E3 fiber #2 removed

• fibers #2 and #3 removed

Fig. 12. MaXll11l11ll ,Ire" rJ" m the tJlanium ply at thc fICl'-edge or the [aminate at the interface
,eparatmg R Ep and Ti plies due lO a temperature chant'e (ll' ,\ T = -- 154.45 C obtained from
distributions of Fig II. normalized ",ith respect to the cprresponding maximum stress obtained

from the conliguration with ulllf"Illlh '['aced fiber,.

the adjacent plies at the free edge as is observed III Fig 4. The results presented in Figs 11
and 12 indeed indicate that the local fiber volume fraction has a significant effect on the
interlaminar stresses at the free edge, thereby supporting this second approach in reducing
the peel stress. In addition to decreasing the horizolltal tiber spacmg in the vicinity of the
free edge, the two rows of fibers were also shifted \ertically in a uniform manner in order
to bring them closer to the REp- Ti interface and thus decrease the local thermal expansion
mismatch in the thickness direction

The functional grading of the fiber distnhutlOn in the horizontal direction was
accomplished as follows. The total horizontal dlst<lnce occupied by the eight fiber cells
was 2032 Jim. The distance of the center of the first Ii her from the free edge was taken to be
97.36 Jim. This was chosen such that the distance belween the eighth fiber and the homo­
genized BiEp material was 215.9 11m. This is exact I: one half of the width of the unit cell
with a tlber volume fraction of 0.50 in the uniformly spaced configuration. The distances
between the centers of the eight fibers were linearlY tncre<lsed with increasing distance from
the free edge in the manner illustrated in Table -'

Figure 13 presents the four different fiber architectures ncar the free edge in the BIEp
plies that were generated using the combination l)f horiwntal and vertical shifting of the
boron fibers. The relati ve locations of the fibers Wil h respect to the dimensions of the BIEp
plies are the same as in the actual configurations. The baseline configuration is the uniformly
spaced configuration consIdered previousl: with center-lo-center fiber spacing of 254.0 Jim,

shifted horizontally towards the free edge such lhat the location of the center of the first
fiber coincides with the center of the first fiber in the lInearly spaced configuration (i.e.
97.36 pm from the free edge). The second configur:ltwn was generated from the first by

Table Center-I"-l'Cllter d"tance, hetween libel" 1I1 Inc' cc'll, .11 til<' free edge III the linearly spaced
L'on1iguratl, In"

Free edge

\ -+

-+ "
5 (,
(, -,

7 ~

hOlllogenl/ed H EI'

CeI11er-!(l-ct"l1kt d"tClllll' between adlacent fibers (pm)

')/. -;(~

201.(10
-11.'.l){)

~~ .~ O. -, II

:'-15 ';11
~hU,~:­

~'5_~(J

29{J.II{I

, t " '1(1
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Fig. 13 Schematic of ditferenl tiher (hstribullons in the BIEp ply near the free edge.

uniformly shifting the two rows of fibers in the vertical direction while preserving the
uniform horizontal fiber spacing. The third configuration was generated by linearly increas­
ing the fiber spacing in the horizontal direction with increasing distance from the free edge,
in the manner described previously. while preserving the vertical spacing of the baseline
configuration. Finally, the fourth configuration was obtained from the third by vertically
shifting the two rows of fibers in the same manner as was used to generate the second
configuration. The total fibre volume fraction of the BIEp region with the four fiber
architectures considered was 0.50. The local fiber volume fractions of the vertical columns
of cells in the uniformly spaced and linearly spaced fiber configurations are given in
Table 4.

The resulting peel stress distributions along the B/Ep-Ti interface in the four con­
figurations caused by the uniformly applied temperature change of -154.45°C are illus­
trated in Fig. 14. Comparing the peel stress distribution in the uniformly spaced baseline
configuration (Fig. 14a) with the stress distribution in the second configuration (Fig. 14b)
we observe increased peel stress oscillations in the regions directly below the fiber locations.

fable 4. Local fiher \olume fractIOns in the cells at the free edge

Cell number from free edge

4

\ (uniform liher spacing)

055
0.50
11.50
0.51)

050
1150
1150
OA,

VI (linearly increasing fiber spacing)

0.63
0.60
0.56
0.52
0.49
0.46
0.44
0.34

The fiber volume fraction in the I st and 8th cells of the uniformly spaced configuration differs from 0.50 owing
to horizontal shift of the fiber architecture towards the free edge as explained in the text.
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The relative increase in the oscillations is caused 0\ the reduced distance between the
interface and the bottom rO\v of fibers produced oy the vertical shift. The vertical shift also
produces a reduction in the maximum peel stress at the free edge relative to the baseline
configuration. The peel stress distribution in the configuration with the linearly spaced
fibers (Fig. l4c) exhibits decreasing oscillations with decreasing distance from the free edge
relative to the baseline configuration. A substantially greater decrease in the maximum peel
stress at the free edge relative to the baseline configuration is also observed, as compared
to the free-edge peel stress reduction observed in the second configuration. Finally, the peel
stress distribution in the fourth configuration presented lt1 Fig. 14d exhibits characteristics
that are peculiar to the second and third configuration. Here. we observe an increase in the
peel stress oscillations relative to the baseline configuratIon that decrease with decreasing
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Fig. 15. Maximum ,tress (i" III the lilamum ply at the free-edge of the laminate at the interface
separating BEp and Ti plies due to a temperature change of !1T = -154.45 C obtained from
distributions of Fig 14. normalized with respect to the corresponding maximum stress obtained

from the configuration with uniformly spaced fibers.

distance from the free edge. The reduction in the maximum peel stress at the free edge also
appears to be substantial, and slightly greater than in the third configuration. A more
precise comparison of the maximum peel stress values at the free edge in the functionally
graded configurations is presented in bar chart format in Fig. 15, normalized by the
corresponding value of the uniformly spaced baseline configuration. As is observed, the
greatest reduction in the peel stress (i.e. co 25%) occurs when the fibers are both linearly
spaced and vertically shifted. When the fibers are linearly spaced without the vertical shift,
the reduction is approximately 24"/". mdicating that the additional vertical shift does not
playa significant role in this case. In fact, the increased oscillations in the peel stress
distribution caused by the vertIcal shift may not be desirable in some situations. Alter­
natively, when the fibers are vertically shifted without decreased horizontal spacing, the
peel stress is reduced by a modest l)(~.~1. Thus it appears that the major contribution to the
reduction of the free-edge peel stress comes from functional grading in the horizontal
direction.

It is interesting to relate the reduction in the peel stress produced by the functional
grading of fiber architecture to the red uction in the transverse thermal expansion mismatch
between REp and Ti plies with increasing flber volume fraction illustrated in Fig. 4. As
observed in the tlgure. the transverse thermal expansion mismatch decreases rapidly with
increasing fiber volume content 1'01' tiber volume fractions greater than approximately 0.05.
As observed in Table 4. the local fiber volume fractions in the flrst three vertical columns
of cells in the uniformly spaced conflgurations are 0.55. 0.50 and 0.50, compared to 0.63,
0.60 and 0.56 in the linearly spaced configurations. Figure 4 indicates that the transverse
thermal expansion coefficients in a B Ep ply with fiber volume fractions of 0.50,0.55 and
0.63 are 32.50. 29.52 and 24.91 (10 " C 1), respectively. The relatively modest decrease in
the local thermal expansion mismatch (approximately 14%) in the immediate vicinity of
the free edge (i.e. the tirst three fibers) achieved by a correspondingly modest increase in
the local tiber volume fraction (approximately 14%) thus produces a substantial reduction
in the peel stress at the free edge (approximately 25%). This obviously has technologically
signitlcant implications.

4. Sl \1\1:\RY !\ND CONCLUSIONS

A previously developed theory for the elastic response of metal matrix composites with
a finite number of uniformly or non uniformly spaced inclusions or fibers in the thickness
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direction subjectcd to d through-thickness thermal gradient has been extended herein to
enable analysis of material architectures characterized by nonuniform fiber spacing in
two directions. In this new approach. the microstructural and macrostructural details are
explicirh coupled when solving the thermomechanical boundary-value problem. Coupling
of the local and global analyses allows one to rationally analyse the response of polymeric
and metal matrix composites such as BEp. BAI and SiCTiAI that contain relatively few
through-thickness fibers. as well as so-called functionally graded materials with con­
tinuously changing properties due to nonuniform fiber spacing or the presence of several
phases. For this class of emerging composites. it is dltlicult. if not impossible. to define the
representative volume element (R VE) used in the traditional micromechanical analyses of
macroscopically homogeneous composites (Hill. 1963 \.

The extension of the theory 10 material architectures runctionally graded in two
directions makes possible the analysis of laminated lomposite plates with finite dimensions
in one plane subjccted to combined thermomechanlcal loading. In particular, the tech­
nologically important interlaminar stress fields in l~lminated composite plates in the vicinity
of the free edge can be analysed with the outlined approach. The mismatch in the thermo­
mechanical properties between adjacent plies III layered composites gives rise to severe
stress concentrations at the free edge which often cause delamination failures. A review of
the free-edge problem and a diSCUSSion of the associated failure modes in laminated com­
posites has been given by Herakovich ( 19X9).

The presented comparison ofinterlaminar ~tresse~ in a symmetrically laminated B;Ep­
Ti plate subjected to a uniform temperature change generated using the new coupled
approach and the tinite-element method based on homogenized properties of the individual
plies demonstrates the capability of the proposed theory to capture the large stress gradients
at the free edge. Explicit incorporation of the microstructure of the B/Ep plies in the
interlaminar stress calculations using the coupled theory produces maximum value for the
peel stress at the free edge that is approximately 35°0 higher than the corresponding value
based on the homogenized B Ep ply properties (Fig. I() I This req uires explicit consideration
of at least seven columns of tibers localized at the free edge. Microstructures with fewer
fibers produce stress fields that do not adequately rcficct the actual stresses. Thus the
calculation of the technologically important interlamll1ar peel stress at the free edge of a
laminate based on the homogenized continuum approach substantially underestimates the
actual stress fields. leading to unsafe designs.

In order to reduce the high interlaminar peel slioc,s at the free edge. the local thermal
expansion mismatch between the B Ep and Ti plies must be reduced. This can be achieved
by altering the microstructure of the BEp plies at the free edge through functional grading
of the boron fiber distribution. By decreasing the tiber spacing with decreasing distance
from the free edge the local fiber volume fraction in the BEp plies is increased. thus
decreasing the transverse thermal expansion nllSmatch as observed in Fig. 4. Substantial
reductions in the free-edge peel stress can be achieved by a relatively modest increase in the
local fiber volume fraction directly at the free edge ("ee FIg. 15 and Table 4).

ft should be emphaSIZed that the new theory presented herein makes possible the
investigation of the effect'- of tiber distribution and libel' shape in functionally graded
composites. Reccnt investigation of these elfccts in douhly-periodic composites was con­
ducted by Arnold ('I al. (1995) using the concept l,f a repeating unit cell. Such effects can
now be investigated in the presence of a continuously changing microstructure in con­
junction with the coupling of the micro and macro-structural response.

Finally. in previous investigations the authors have demonstrated that the inclusion of
inelastic effects in the analysis of functionally graded materials may be important in the
presence of large temperature gradients in applicatIons involving one-dimensional version
of the higher-order theory (cf Pindera el 01.. 1994. Aboudi 1'1 of.. 1995a). Others have
demonstrated the importance of inelastic effects \\ ithin the context of the free-edge problem.
For example. Drake er of. 11993) and Williamson 1'1 ,t!. (11)93) employed the finite-element
method to study the residual stresses that develop at graded ceramic-metal interfacesjoining
cylindrical bodies made of metallic and ceramil' materials. The gradation was modeled
using a series of perfectly bonded cylindrical layers. with cach layer having slightly different
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properties. Their results demonstrate the importance of plasticity effects in the analysis of
graded and non-graded interfaces. The authors also showed that in some cases optimization
of the microstructure of graded layers is required to achieve reduction in certain critical
stress components that control interfacial failure. Along similar lines. Suresh et al. (1994)
studied the response of elastoplastic bimaterial strips subjected to cyclic temperature vari­
ations. Closed-form solutions were derived using simple beam and plate theories to analyse
the stresses and curvature that develop in a bimaterial configuration for the considered
thermal loading. In addition, finite-element formulation was employed to capture other
features not included in the simple analytical models. In particular, the authors showed
that the plastic flow along the interface separating the two materials at the free edge can be
modified substantially by altering the constraints at the edges of the strip. Therefore,
in subsequent investigations inelasticity effects will be incorporated into the theoretical
framework of HOTFGM-2D.
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APPENDIX A: THERMAL ANAL YSIS
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Heal conduclion equalions
Multiplying eqn (I) by (~',")' (~t)'" (S", f. where I. m. 11 = O. I. or ::. with I+m +n ~ 2, and integrating by

parts. using the temperature expansion given in eqn (9). the following equations are obtained:

=0

(AI)

(A2)

(A3)

(A4)

[L (AS)

where QW:,:,',,, has been defined previously In eqn (10), and

'" f f~') d')Jd\V"d~i 'LI~';:;-.'il,II' =

J 'I,
, '[ 2,' . - '.'

) J
[q,' )+ "I;''''! h"tJ) ]L~~';i~./'_Ol = I Ii Ji. dol" doll

""l .\ I .\ ~

~ !

(A6)

(A7)

(A8)

I'" ]1+ ( II II' (, -i) ds\" d~~/" (A9)

In the above: n = 0 or I . q~'" (iii, 2), 11;'(' I
x¥" = ±~hbql, _~\' = ±U"'. respectlvelv. and
cell. - -

'I! I" 2) denote the interfacial fluxes at .~:" = ±~d"
IS the volume of the subcell (rxf))') in the (p. q. r)th

Equations (A I )-·(A6) provide relations between the zeroth-order and first order heat fluxes Qi(t~;'", and the
interfacial fluxes L,,<~J:;;',,, Explicit expressions for the interfaCial fluxes L;,?:" ',,, given solely in terms of Qi\~P';;'", are
obtained through the following sequence of manipulations, noting that eqns (A2) and (A3) already provide direct
relations between Q~~W!'I" and L\~(::"" and Q\~~:!,,,, and V'r~i" First. substituting eqn (A I) into (AS) and (A6),
respectively, gives the following direct expressions for L;:;',), o, and C'ri', :'0'-

(AIO)

(All)

Then upon substitution of eqns IA!O) and (A II) into IA II we oht,"n the following expression for L\~~:_b_ol'

(At2)

Equations (A 10) to (A 12) will he used to reduce the heat conductlOn and heat flux continuity equations to
expressions involving only the heat flux quantities Q:,'r')"",. These can subsequently be expressed in terms of the
fundamental unknown coefficients T.',::;,,:. appearing in the temperature expansion given by eqns (9), using eqns
(11 )-(15).

Heatflux continuilr equations
The heat flux continuity conditions (3) (4) are imposed on ,m average baSIS at each subcell and cell interface.

The heat flux condition in the', direction is obtained using eqn 13alln (A 7), yielding

(I (A13)

We note that eqn (4a) is IdentIcally satIsfied for a matenal thai is penodiC in the x, direction by the chosen
temperature field representation

Prior to imposing the continuity conditIOns In the Hj \. and \ directIOns. let us define intermediate quantities
./;,P:, and q;,P:I as follows

1\' ':::::::. (/' 'I
'I (AI4)

I

I.;C' = qV ' 'I + q~" I (AI5)
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These quantities will simplify the algebra associated with application of the heat flux continuity requirement on
an average basis in the x, FG direction. Then substituting eqns (3b) and (4b) into the above definitions, we have

q~7.1 il(/','II: = (/~~~:li

(AI6)

(A 17)

Adding and subtractmg equal quantitIes to and from eqns (AI6) and (AI7) it can easily be verified that

2f\":! I'P."! = l -- (AI8)

(AI9)

Then using eqns (AIS) and (AI9) in (AS). we obtain the following heat flux continuity conditions for the x, FG
direction:

[ I l'.ll~'1 1:..::"1 I],
--'IL:' IO ,o.OI+L":.l[)I.III- ) [

L"':' + h'L"':l J'1'.4 '.') = 0
- 2(0.1.0) 2 2(0,0.0) (A20)

[ L"" +'L,2, iI. "." ]"'4'" I [",:) h, ",.. , JIP.4-1.!' =0.
- :(O,I.lh ~' ::',:0'1 i1] - 4 L::'III n,lIi _ + 2. L2(0.I,O) + 2L210.0.0l

Similarly. the heat flux continuity conditions 13cI and (4c) m the remaining x, FG direction provide

[ I L
l:t.fil) L(J:/CI _ I_':.l,i,ll:) ,JIII.'tfl [Li':X1i21 !2L(:1./l21 JI]J,4J

- 1) 0
- I ](0.0,0] + :t(O,O,I,- 2"111),0,11) - J(O.U.l)+ 2 3(0.0.OJ =

and

[
L ll/i1~ +'LI7./QI , 1. 2 llz/;::, JII'.(/.lI+ '~[L{:Xfi2) +!2L('XII21 JtP.IJ,I'-I) 0

- _'lI).n.11 ~ '][0,0.1', -- 4 '~~(llil()J 2 :\10.0,1) 2 ](0.0.0) = .

(A21)

(A22)

(A23)

EquatIOns (AI0)-(AI2), together with eqns IA2) and (A3). will be employed in reducing the heat flux continuity
conditions (Al3). (A20)-(A23) to expressions mvolving only the volume-averaged zeroth-order and first-order
heat flux quantities Q!'I~;"""

Reduction ofheat conduction and heatflux conrinuity equations
Substituting eqn (AI) into (A4), and using eqns (AIO) and (All), reduces the volume-averaged heat

conduction equations to a set of eight equations given by eqn (16). Next, using the expression for L\(~;lo) given
by eqn (AI2), and the expression for Lilli;'"" given by eqn (A2). and Lj(/A:.hll given by eqn (A3), in the continuity
relations (A 13), (A20)-(A23). we obtain eqns (17) and (21)

Thermal continuin' equations
As in the case of the heat flux field. the thermal continUIty conditions (5)-(6) are imposed on an average basis

at each subcell and cell interface. Thus substituting eqn (9) into eqns (5a-<:), respectively, we obtain at each subcell
interface the conditions (22), (23) and (25). Furthermore, substituting eqn (9) into eqns (6b--<:) to ensure continuity
of temperature between neighboring cells in the FG directions. we obtain the conditions (24) and (26).

APPENDIX B MECHANICAL ANALYSIS

Equations of equilibrium
Let us multiply eqn (2S) by (.~:")i (.~VJT" (~\ ')". where again I, m, n, = 0, I, or 2 with 1+ m +n ~ 2. Integrating

the resulting equations by parts, and usmg the dIsplacement expansions (37). we obtain the equations ofequilibrium
in the subcell region ('1.fI;') in the form

(BI)

(B2)

(B3)

(B4)

(B5)

(86)

(B7)
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wherej= 2,3 in eqns (B1) and I.B31 1B"7). while 111 equation (B2)!"~ I [n the above equations,
defined previously in eqn (38). and
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has been

P
1

),Jiil.'o.1I1 I,dl' [fT'," l.d,1 , I , '( 'd,)Jd~;i') dS~1 (B8)

J~~~i;/), ," 1fT" '( h I I rr ~jl: I ( 'h!t)] d~;" ds\' (B9)

K\!J1/1I\'I! _. I I I
[a'/I' I ~ I' ' 1+ I I I Irr/I!>( '/''')J d..q~1 dsj/JI. (BIO)

[n the above: 17 = 0 or I, ,;','!' 'I:! fT\'" I ± ). fT' '(. j'). stand for the interfacial stresses at
.y\Y) = ±~dl ..qill = ±~h;;i' ..\'\' . rcspccllvely.

Equations (Bl) (B7) provide relations between the zeroth-order and first order, volume-averaged stresses
5;://;;,.", and the interfacial tractions 1:~:J,,'o '''' and K'J~~'II'II'" Direct "one-to-one" relations are obtained
through the following sequence of mampulations, noting that eLJns (B2) (B4) already provide direct relations
between S1~1~;d.o.O) and 1\7/;-''/,1:,,111, S~~~ii-I'II_1l1 and S~~,~ii/(J_lli and K\~~I;)\I II" j = 2. 3. First. substituting eqn (Bl)
into eqns (B6) and (B7), respectively. gIves direct expressions for F':'''''i'' and K\~~jll'III1"

Then, upon substitution of eqns (B I I) and 1B 121 1I1tO I B I I. \\ e het '. L' Ihe followmg expression for

I '

(BII)

(BI2)

(813)

EqualJons (B 11 )-1 B13) \, ill he used 10 reduce the equilihrlum eLJ uatlons and traction contmUity equalLons to
expressions involving only the zeroth-order and first-order. volunlC-averaged stress quantities S;Y!',,'u,," These can
subsequently be expressed in terms of the fundamental unknown coefticien" Wi,;:;,,,', appearing in the displacement
field expansion given by eLJns (37), U>111g l'LJIlS (.,9) 1461

Traction cOf1tinuir.l' ('ondiritJll.\
The traction continuity eonditlolh eLJlh 1.11! 1.121. are Imp'bed Oil all a\erage baSIS at the subcell and cell

interfaces. These conditions implv eXlslence e,f eertalll relationshIp, hetweell the surface integrals of thc interfaCial
traction components defined hv cLJns ISS) (BIO). The normal traction c'lIltinuily condition in the 'I periodic
direction is obtained using eqn (11a1111 ISS) With I = I ThIS vlelds

II ",,,, I,' ',,, I (B14)

We note that eLJIl (32a) h Idenucallv satisfied for I -= I
For the shear tractloll conlllluit\ LOlldJlIOIl, III thL' \ d,rL'cll<1I1 \\e "hlalll from eqll (31a) and (B8) with

i = 2.3

- d F, II (BI5)

Again, eqn (32a) IS Identically sauslied 101 I 2.;
To assist in establishing the conllllllltv rclati(l1lS In Ihe Hi dllL'c'tIOib. let us define two new quantities

and G,';" , as follows

F (j,'1

;0

IBI6)

(BI7)

Substituting eqns 131 b) and (.12hl Into (he ahow ddinJllollS. \,e obl"lll. respecuvcly

IB18)

(819)

By addition and subtractIon of cLJlJdI qualltltles to and from CLJlb ,B I xI and IB 19) It can easily be verified that

[(,

F ' (j, I

F,' I

[I

,I I';'

(B20)

(B21)

Then employing eqns (B20) and (B21 I III CLJll IB9) wllh I 2_~ \\L' "ht'"ll the corresponding relations:
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(B22)

Similarly. using eqns (~Ic) and (~2cl with I 2.~ we have

= O. (B23)

(B24)

(B25)

As a result of the above manipulatIOns, 44 relations. given by eqns (BI4)~(BI5) and (B22)-(B25), arise from
the traction continUity conditions between subcells and between neighboring cells. These equations, in conjunction
with eqns (B2)-(B4) and (BII) (B13). will be employed in reducing the equilibrium and traction continuity
equations to expressIOns involving only volume-averaged zeroth-order and first-order stresses S!,'t.~,.n)'

Reduelion ofequi/ihrium and Iraerion co/llillUin' equaliom
Substituting eqn (BI) into eqn (B5) and using eqns (B 11) and (B12) reduces the volume-averaged equilibrium

equations to a set of 16 equations given by eqn (47). Next. combining the expressions for I:'~·1.o.o) and ri',~:3.o.o),
provided by eqns (B2) and (BI3). and the continUIty relations (BI4)~(BI5), respectively, we obtain the 12
equations given by (48H50). Continuing. if we substitute eqn (B3) and (BII) into eqns (B22)-(B23) directly, we
obtain eqns (51) and (52), respectively Finally. combining equations (B4) and (BI2), and eqns (B24) and (B25),
yields eqns (53) and (541. respectively.

Displacemelll eOlllilluirl (ol/(/lliolls
The displacement continuity conditIOns. I.e. eqns (~~I (34), are now imposed on an average basis at the

interfaces. This IS accomplished by first substItuting eqn (37) into eqn (33a), yielding eqns (55)-(57), then into
eqns (33b)-(34b). yieldmg eqns (58)~(61), followed by eqns (33c)-(34c), yielding eqns (62) and (65). Consequently,
eqns (55)--(65) provide 44 relations which must be imposed to guarantee the continuity of the displacements
between the subcells and between neighbonng: cells


