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Abstract-- A recently developed micromechanical theory [or the thermoelastic response of func-
tionally graded composites with nonuniform tfiber spacing m the through-thickness direction is
further extended to enable analvsis of material architectures characterized by arbitrarily nonuniform
fiber spacing in two directions. In contrast to currently emploved micromechanical approaches
applied to functionally graded materials. which decouple the local and global effects by assuming
the existence of a representative volume element at every point within the composite, the new theory
explicitly couples the local and global effects. The analytical development is based on volumetric
averaging of the various field quantities. together with imposition of boundary and interfacial
conditions in an average sense. Results are presented that illustrate the capability of the derived
theory to capture local stress gradients at the free edge of u laminated composite plate due to the
application of a uniform temperature change. It is further shown that it is possible to reduce the
magnitude of these stress concentrations by a proper management of the microstructure of the
composite plies near the free edge. Thus by an appropriate tatloring of the microstructure it is
possible to reduce or prevent the likelihood of delamination at free edges of standard composite
laminates.
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NOMENCLATURE

pog.r Indices used to idenuty the cell (p.g. r)
N, N, number of cells in the v. and x; directions. respectively
apy indices used to identify the subcell (z/f7)
d, b 1" dimensions of the subcell (2f;) in the (p.g. rith umteell
vin) volume of the subcell (2f-) in the (p.¢. rith unit cell
R R S 8 local subcell coordinates
ko coefficients of heat conductivity of the material i the subcell (2f3;)
T temperature field in the subcell {(xf)
T, temperature at the center of the subcell 1257 when / = m = n = 0 coeflicients associated
with higher-order terms in the temperature field expansion within the subcell (2f;) for other
values of /. m. n
i components of the heat flux vector in the subcel 1#/5)
i average values of the subcell heat flux component ¢ when / = m = n = 0 higher-order
heat fluxes for other values of L. m. n
L surface integrals of subcell interfacial heat fluxes
w displacement components in the subcell (25
SV displacement components at the center of the subcell (2f;) when / = m = n = 0 coefficients
associated with higher-order terms in the displacement ficld expansion within the subcell
(2;) for other values of /. m. n
P local strain components in the subcell (/i)
e local stress components in the subcell (3f)
o clements of stiffness tensor of the material in the subcell (2f5;)
rye elements of the thermal tensor of the materat iy the subcell (xf57)

Smx‘ 3
it

average values of the subcell stress components o'
stress components for other values of /o m. s

when /= m =n = 0; higher-order
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I8 0 surfacc integrals of the subcell interfacial stresses ¢ at ¥ = +d,2
) o surface integrals of the subcell interfacial stresses o4 at £ = + A2
Ko surface integrals of the subcell interfacial stresses ot/ at 87" = +/72

I. INTRODUCTION

Functionally graded materials (FGMs) are a new generation of composite materials in
which the microstructural details are spatially varied through nonuniform distribution of
the reinforcement phase, by using reinforcement with different properties, sizes and shapes,
as well as by interchanging the roles of reinforcement and matrix phases in a continuous
manner. The result is a microstructure that produces continuously changing thermal and
mechanical properties at the macroscopic or continuum level.

The use of functionally graded materials in applications involving severe thermal
gradients is quickly gaining acceptance in the composite mechanics community and the
aerospace and aircraft industry. This is particularly true in Japan and Europe, where the
concept of FGMs was conceived. The current approach employed by the Japanese and
European researchers in analyzing the response of FGMs to thermal gradients is the
standard micromechanics approach based on the concept of a representative volume
element (RVE) assumed to be definable at each point within the heterogeneous material
(cf. Wakashima and Tsukamoto. 1990; Fukushima, 1992). This assumption, however,
neglects the possibility of coupling between local and global effects, thus leading to poten-
tially erroneous results in the presence of macroscopically nonuniform material properties
and large field variable gradients. This is particularly true when the temperature gradient
is large with respect to the dimension of the inclusion phase, the characteristic dimension
of the inclusion phase is large relative to the global dimensions of the composite, and the
number of uniformly or nonuniformly distributed inclusions is relatively small (Aboudi
et al., 1993). Perhaps the most important objection to using the standard RVE-based
micromechanics approach in the analysis of FGMs is the lack of a theoretical basis for the
definition of an RVE, which clearly cannor be unique in the presence of continuously changing
properties owing to nonuniform inclusion spacing.

As a result of the limitations and shortcomings of the standard micromechanics
approach, a new higher order micromechanical theory for functionally graded materials,
“HOTFGM?", that explicitly couples the local and global effects, has been developed
(Aboudi er al.. 1993 ; Aboudi er al.. 1994a.b). The results obtained thus far have demon-
strated that the theory is an accurate, efficient and viable tool in the analysis of functionally
graded materials and design of functionally graded architectures in metal matrix composites.
These results include verification of the accuracy of HOTFGM using the finite-element
method (Pindera and Dunn. 1995). and the assessment of the applicability of the uncoupled
micromechanics approach for the analysis of functionally graded materials (Pindera et al.,
1994, 1995). In particular, comparison of results obtained using the standard micro-
mechanics approach with those of HOTFGM has demonstrated the need for a theory which
explicitly takes into account the micro-macrostructural coupling effects, thus justifying the
development of the coupled higher-order theory.

HOTFGM is a recently constructed theory that continues to evolve. The original
formulation has been developed in the Cartesian coordinate system. and was intended for
the analysis of functionally graded plates subjected to a temperature gradient across the
plate’s thickness that coincides with the direction along which the microstructure is graded.
The most recent developments of the Cartesian-based theory include incorporation of two
inelastic constitutive models for the response of metallic matrices (Aboudi ef al., 1995a)
and extension of the theoretical framework to include generalized plane strain loading
situations in order to facilitate modeling of actual functionally graded structural com-
ponents (Aboudi er al., 1995b).

In this paper we present a further extension of HOTFGM that involves development
of a two-dimensional framework to enable modeling of composites functionally graded in
two directions. The analytical approach in the two-dimensional theory, as in the one-
dimensional version, is based on volumetric averaging of the various field quantities together
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Fig. 1. Composite with nonperiodic fiber distributions i the v, and v directions: (a) aligned
inclusion architecture. (b) random inclusion architecture.

with the imposition of boundary and interfacial continuity conditions in an average sense.
The previous restriction ol periodicity in two orthogonal directions, however, is presently
abandoned thus allowing arbitrary distribution of one or more reinforcement phases in one
plane. This leads to a significant generalization of the theory. As a result, composites
with finite dimensions along the functionally graded directions can be analysed. Figure 1
illustrates the types of internal architectures that can be analysed with this new two-
dimensional version of HOTFGM. These architectures include rows of aligned inclusions
(or continuous fibers) with variable spacing in the functionally graded x, and x; directions
and regular spacing in the periodic v, direction (Fig. 1a). Alternatively. completely random
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inclusion (or fiber) architectures in the x. x; plane can also be admitted (Fig. 1b). At
present, the two-dimensional version of the theory. herein called HOTFGM-2D, is limited
to the analysis of functionally graded composites in the linearly elastic range.

This theory is subsequently employed 1o study the free-edge problem in a symmetrically
faminated B/Ep-Ti composite plate subjected 1o a uniform temperature change. The capa-
bility of the theory to capture large stress gradients near a geometric discontinuity such as
the free edge is established upon comparison with finite-element analysis carried out by
Herakovich (1976) using homogenized properties for the B/Ep plies. Subsequent incor-
poration of the actual microstructure of the B/Ep plies in the HOTFGM-2D analysis of
the free-edge stress fields demonstrates the limitations of the homogenized continuum
approach in the presence of course microstructure and large stress gradients. Finally, the
potential of using functionally graded fiber architectures in reducing edge effects in lami-
nated MMC plates is demonstrated by investigating the effect of nonuniform fiber dis-
tributions in the B/Ep plies near the free edge. It should be noted that even though the
utility of the theory is demonstrated herein for the special case of a symmetric laminate under
uniform temperature change, the theory naturally can be employed in more complicated
situations with non-zero temperature gradients.

2OANALYTICAL MODEL

HOTFGM-2D is based on the geometric model of a heterogeneous composite with a
finite thickness H, and finite length /.. that is infinite in the x, direction {(see Fig. 1). The
loading applied to the boundaries of the composite in the x,-x; plane may involve an
arbitrary temperature distribution and mechanical effects represented by a combination of
surface displacements and:or tractions. The composite is reinforced in the x,-x; plane by
an arbitrary distribution of infinitely long fibers oriented along the x, axis, or finite-length
inclusions that are arranged in a periodic manner in the direction of the x, axis. The
heterogeneous composite is constructed using a basic building block (p, g,r) (Fig. 2a),
consisting of eight subcells designated by the triplet (xfy), (Fig. 2b). Each index o, 8, y
takes on the values 1 or 2 which indicate the relative position of the given subcell along the
Xi. X, and x; axes, respectively. The dimensions of the unit cell along the x, axis, d,, d,, are
fixed for the given configuration since this is the periodic direction, whereas the dimensions
along the x, and x, axes or the FG directions, 4. A\, and /{”, I{”, can vary from unit cell
to unit cell. The dimensions of the subcells within a given cell along the FG directions are
designated with running indices ¢ and r which identify the cell number in the x,—x, plane,
where ¢ and r remain constant along the v, axis. For the remaining direction, x,, the
corresponding index p is introduced. Thus a given cell is designated by the triplet (p, g, r)
for an infinite range of p owing to periodicity in the x, direction, and for g =1,2,..., N,
andr = 1.2...., N,. where N, and N, are the number of cells in the FG x, and x; directions.

It is important to note that the unit cell (p, ¢. r) in the present framework is not taken
to be an RVE whose effective properties can be obtained through local homogenization, as
is done in the standard uncoupled micromechanical approaches based on the concept of
local action (Malvern, 1969). In fact. for fully nonuniform distributions of fibers or
inclusions in the x,—x; plane, no RVE can be identified. Thus the principle of local action
1s not applicable at the individual cell level. requiring the response of each cell to be explicitly
coupled to the response of the entire array of cells in the FG directions. This is what is
meant by the statement that the present approach explicitly couples the microstructural
details with the global analysis. and thus sets HOTFGM-2D apart from the standard
approaches found in the literature. The limitations of the standard uncoupled approach,
and the error that results from decoupling of the local and global effects, were recently
discussed by Pindera er a/l. (1994, 1995).

2.1. Outline of the solution technique

The solution of the thermomechanical boundary-value problem outlined in the fore-
going is solved in two steps. following the general framework for the solution of the
corresponding one-dimensional thermoelastic problem discussed previously (Aboudi et al.,
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Fig. 2. (a) Three-dimensional schematce of a tunctionaliv graded composite in the x, and x;
directions showing the dimensions of the basic building block (b) of the composite.

1993). In the first step. the temperature distributon m every cell is determined by solving
the heat equation under steady-state conditions in cach cell subject to the appropriate
continuity and compatibility conditions. The solution to the heat equation is obtained by
approximating the temperature field in each subcell ot a unit cell using a quadratic expansion
in the local coordinates ', ", ¥ . centered at the subcell’s mid-point. A higher-order
representation of the temperature field is necessary i order to capture the local effects
created by the thermomechanical field gradients, the microstructure of the composite and
the finite dimensions in the FG directions. in contrast with previous treatments involving
fully periodic composite media which emploved lincar expansions (Aboudi, 1991). The



936 I Aboudi ¢t al.

unknown coeflicients associated with each term in the expansion are then obtained by
constructing a system of equations that satisfies the requirements of a standard boundary-
value problem for the given temperature field approximation. That is, the heat equation is
satisfied in a volumetric sense, and the thermal and heat flux continuity conditions within
a given cell, as well as between a given cell and adjacent cells, are imposed in an average
sense.

Given the temperature distribution in the functionally graded composite in the periodic
and FG directions, internal displacements. strains and stresses are subsequently generated
by solving the equilibrium equations in each cell subject to appropriate continuity and
boundary conditions. The solution is obtained by approximating the displacement field in
the FG directions in each subcell using a quadratic expansion in local coordinates within
the subcell. The displacement field in the periodic x, direction. on the other hand, is
approximated using linear expansion in local coordinates to reflect the periodic character
of the composite’s microstructure along the x, axis. The unknown coefficients associated
with each term in the expansion are obtained by satisfying the appropriate field equations
in a volumetric sense, together with the boundary conditions and continuity of dis-
placements and tractions between individual subcells of a given cell, and between adjacent
cells. The continuity conditions are imposed in an average sense. This results in a coupled
system of equations involving the unknown coefficients in the displacement representation
for each cell.

An outline of the governing equations for the temperature and displacement fields in
the individual subcells within the rows and columns of cells considered in solving the
outlined boundary-value problem is given in the following. A detailed derivation of these
equations is presented in Appendices A and B so as not to obscure the basic concepts by
the involved algebraic manipulations.

2.2. Thermal analysis: problem formulation

Suppose that the composite material occupies the region |x,| < 20, 0 < x;, < H,
0 < xy < L. Let the composite be subjected to the temperature 77 on the top surface
(x> = H), Ty on the bottom surface (x. = 0). T on the left surface (x; = 0), and Ty on the
right surface (x; = L). Also, let ¥, denote the number of cells in the interval 0 < x, < H,
Le.

N
u

H=S (b +ho).

gl

Likewise, let N, denote the number of cells in the interval 0 < x. < L. i.e.

r =1, N, they are boundary cells.

2.2.1. Heat conduction equation. For a steady-state situation, the heat flux field in the
material occupying the subcell (xff;) of the (p.q¢.r)th cell, in the region defined by
|0] < 3, 2] < AR < L. must satisfy |

Crgi g G = 0, (1)

where ¢ = ¢/¢xy. ¢y = 03V ¢ = ¢:.¢xy'. The components of the heat flux vector

¢ in this subcell are derived from the temperature field according to:
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¢ = kTR (=120 35 no sum), 2)

where &% are the coefficients of heat conductivity of the material in the subcell (xfy). and
no summation is implied by repeated Greek letters in the above and henceforth. Given the
relation between the heat flux and temperature. a temperature distribution that satisfies the
heat conduction equation is sought subject to the continuity and boundary conditions given
below.

2.2.2. Hear flux continuity conditions. The continuity of the heat flux vector ¢ at
the interfaces separating adjacent subcells within the unit cell (p. ¢. r) 1s fulfilled by imposing
the relations

G =g (3a)
gy =g (3b)
g s g e (3¢)

In addition to the above continuity conditions within the (p. ¢, r)th cell, the heat flux
continuity at the interfaces between neighboring cells must be ensured. The conditions that
ensure this are given by

g e g e (4a)
oo g (@)
(/w:wd»“,‘,q“ . ’/‘, S [/‘;"‘(’: ‘ _,,;J” e (4C)

2.2.3. Thermal continuity conditions. The thermal continuity conditions at the inter-

faces separating adjacent subcells within the cell (p.y.r) are given by relations similar to

the corresponding heat flux continuity conditions. \
I L (5a)
LA I A (5b)
e =T (5¢)

i

(v

while the thermal continuity at the interfaces between neighboring cells is ensured, as in the
case of the heat flux field. by requiring that

r =T (6b)
S AN ST (6c)

2.2.4. Boundary conditions. The tinal set of conditions that the solution for the temperature
field must satisfy are the boundary conditions at the top and bottom, and left and right
surfaces. The temperature in the cell (p. 1.r) at the bottom surface must equal the applied
temperature 7y. whereas in the cell (p. N, r) at the top surface the temperature must be 7.
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7o = Tty ®3 = — kY (7a)
T(:231||/r A TI(,\'q). '{,51) — lh(,Nq), (7b)

wherer=1..... N,

Similarly. the temperature in the cell (p.¢. 1) at the left surface must equal the applied
temperature 7). whereas in the cell (p.¢. N,) at the right surface the temperature must be
TR.

T(7,’.’\]:”r>u [ Tl (~\'1)‘ X,(}I» — 7%](]1} (88)
Tu/m ‘ G N TR(.\'j ). X_g:) — %112.\’,). (Sb)

whereg=1..... N,
Alternatively. it is possible to impose mixed-boundary conditions involving tem-
perature and heat flux at different portions of the boundary.

2.3. Thermal analysis: solution

The temperature distribution in the subcell (2f;) of the (p, ¢, r)th cell, measured with
respect Lo a reference temperature T, is denoted by 7", We approximate this temperature
field by a second order expansion in the local coordinates ¥, ¥, and ¥{"’ as follows:

(PTR— (CT; 8] U sy =
T = oo, + SV T 4+ 30 T

l =102 d’: (xfish Iy =(jf)2 /1/‘\{‘/'3\ (237} ! +(2 [7('")2 ()
RN 3v—~ 4 )T‘:’m,+ N (3-\‘3' T "Z‘)T(o'z'm‘f‘ 5 3xy = 4 TG0, (9)

where T{344,. which is the temperature at the center of the subcell, and T3%) ([, m,n =10, 1,
or 2 with /+m+n < 2) are unknown coefficients which are determined from conditions
that will be outlined subsequently. It should be noted that eqn (9) does not contain a linear
term in the local coordinates ©}”. This follows directly from the assumed perodicity in the
x, direction and symmetry with respect to the lines ¥ = 0 for o = 1 and 2.

Given the six unknown quantities associated with each subcell (i.e.TGh0), - - ., 703
and eight subcells within each unit cell. 48N, N, unknown quantities must be determined
for a composite with N, rows and N, columns of different materials. These quantities are
determined by first satisfying the heat conduction equation, as well as the first and second
moment of this equation in each subcell in a volumetric sense in view of the temperature
field approximation given by eqn (9). Subsequently, continuity of heat flux and temperature
1s imposed in an average sense at the interfaces separating adjacent subcells, as well as
neighboring cells. Fulfillment of these field equations and continuity conditions, together
with the imposed thermal boundary conditions at the top and bottom, and left and right
surfaces of the composite, provides the necessary 48 N, N, equations for the 48 N, N, unknown
coefficients in the temperature field expansion. We begin the outline of steps to generate
the required 48 N N, equations by first considering an arbitrary (p.g.r)th cell in the interior of
the composite (i.e.q = 2,....N,—~landr =2.....N,—1). This produces 48(N,— 2)(N, —2)
equations. The additional equations are obtained by considering the boundary cells (i.e.
g=1,N,and r = 1. N,). For these cells, most of the preceding relations also hold, with the
exception of some of the interfacial continuity conditions between adjacent cells which are
replaced by the specified boundary conditions.

2.3.1. Heat conduction equations. In the course of satisfying the steady-state heat equation
in a volumetric sense. it is convenient to define the following flux quantities:
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1 A ) 5 TR
(B8 -
il \.U't'/" )

g e oo

BV Ry ) g de d Y dey (10)

where Lmon=0 1or2with/~m+n < 2 and i = d,h;" 17" is the volume of the subcell
(2f7) in the (p.g.r)th cell. For / = m =n = 0. Qi) 1s the average value of the heat flux
component ¢ in the subcell. whereas for other values of (/. 7. 1) eqn (10) defines higher-
order heat fluxes. These flux quantities can be evaluated explicitly in terms of the coeflicients

T:% by performing the required volume integration using eqns (2) and (9) in (10). This
yields the following non-vanishing zeroth-order and first-order heat fluxes in terms of the

unknown coeflicients 1 the temperature field expansion.

Ly 7k l(/; ["“
‘_)Mum = —kY 1 I, (1

Q 411‘»4», = */‘ f/‘u I"»,‘“!"m (12)
)1//) I /\,l'/‘r ‘/]‘“/ ‘ Nl (13)
Q (01, - T A2 4 (YN

Qlha, = =k T (14)
IV, = kYT I 15
O3 1 (15)

Satisfaction of the zeroth. first and second moments of the steady-state heat equation results
in the following eight relationships among the first-order heat fluxes Q%%7) in the different
subcells (xf5;') of the (p. 4. )th cell. after some involved algebraic manipulations (see Appen-
dix A):

Q7 QY0 = QI F e =0, (16)
where the triplet (xf'} assumes all permutations of the integers 1 and 2.

2.3.20 Heat flux continuity equations. The contnuity of heat fluxes at the subcell
interfaces assoclated with the periodic v, direction. eqn (3a) imposed in an average sense,
is ensured by:

[QMHIM ‘II+Q‘-IH“M I/ b= () (17)

We note that eqn (4a) that ensures continuity of heat flux in the x, direction between
neighboring cells is identically satisfied by the chosen temperature field representation
owing to the periodicity of the composite in this direction.

The equations that ensure heat flux continuity at the subcell interfaces, as well as
between individual cells. associated with the v. and v. directions. egns (3b, ¢) and(4b, ¢)
are given by

[— 120800 0 7 = Q% cn, = 60V 0 7 —[Q5 L, 6055 0 ha] 7 M =0 (18)

[_Q\"’:(‘l I)}m+1( ‘Z;D !‘lu. - hQ‘Z/u Ty /]I”‘/»(L”_F;[Q\‘:/(r"v . '()Q m NN -]'I’Jr‘ " = 0 (19)

[— 1205000 L+ OV — 000 L] = [QN, +0QY L] =0 (20)
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i1 i2 ! (282} 12y, pgr—1) __
[ Q60 + (@500, — 604 1, L] +5[Q 80 o) + 60567 1y L] ™D = 0. (21)

Equations (17)-(21) provide us with 20 additional relations among the zeroth-order and
first-order heat fluxes. These relations. together with eqn (16). can be expressed in terms of
the unknown coefficients T¢%) by making use of eqns (11)—(15). providing a total of 28 of
the required 48 equations necessary for the determination of these coefficients in the
(p.g.r)th cell.

2.3.3. Thermal continuity equations. An additional set of 20 equations necessary to
determine the unknown coefficients in the temperature field expansion is subsequently
generated by the thermal continuity conditions imposed on an average basis at each subcell
and cell interface. Imposing the thermal continuity at each subcell interface in the periodic
x, direction. eqn (5a). we obtain the following conditions for the (p.g.r)th cell:

8 R A G | 2680 Y pyn
[T:(x()i)‘.+4(/\ [Ci/m)» = [T(ll()ll|+ d T(“(/m ] e, (22)

We note that the continuity of temperature between neighboring cells in the x, direction,
eqn (6a). is automatically satisfied by the chosen temperature field representation which
reflects the periodic character of the composite in this direction.

The continuity of temperature at the interfaces between the subcells. as well as between
the neighboring cells, in the FG directions. egns (5b.c) and (6b.¢), on the other hand, yield

[T1(1()U;+ /7| 7mlm+ BT = (T — ]II’T:aTm"‘ R Tum))](p‘m (23)
(T35, + 5 /7 2T, +L/’§ T ] = [T, — 1/7 T, '*‘%hf Tisa et (24)
[TEh0 3 T + W TR e = [T — LT +26 T e (25)
[T+ W T+ T 7 = (Tl = U TN+ LB TR (26)

Equations (22)--(26) comprise the required additional 20 relations.

2.3.4. Gorverning equations for the unknown coefficients in the temperature expansion.
The steady-state state heat equations. eqn (16). together with the heat flux and thermal
continuity equations. eqns (17)-(21) and (22)-(26). respectively, form altogether 48 linear
algebraic equations which govern 1he 48 he]d variables 734 in the eight subcells («fy) of
an interior cell (p g.r)yig=2...... —~ 1. 2 N,—1. For the boundary cells g = 1,

N,.andr = 1. N, adifferent trummm must bt, dpplled. For ¢ = 1, the governing equations,
eqns (16)- (17) and (20)--(26) are operative. Relations (18)-(19). on the other hand, which
follow from the continuity of heat flux between a given cell and the preceding one are not
applicable. They are replaced by the condition that the heat flux at the interface between
subcell (x17) and (227) of the cell (p. 1. r) is continuous, as well as the applied temperature
relation at the surface x, = 0. eqn (74). For the cell ¢ = N,. the previous equations are
applicable except eqns (24) which are obviously not operative. These equations are replaced
by the specific temperature applied at the surface v, = H, eqn (7b). Similar reasoning holds
for the subcells ¥ = 1 and r = N .

The governing equations at the mterior and boundary cells form a system of 48N N,
linear algebraic equations in the unknown coeflicients 7;%,). Their solution determines the
temperature distribution within the FG composite subjected to the boundary conditions
(7) and (8). The final form of this svstem of equations is symbolically represented below

KT =t (27)

where the structural thermal conductivity matrix k contains information on the geometry
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and thermal conductivities ot the individual subcells (/') in the N N, cells spanning the x,
and x; FG directions. the thermal coefficient vector T contains the unknown coefficients
that describe the thermal field in each subcell. ie. T = [T ... .. Tiia'] where
T((/Qy(z/z’n: = [T(<)n())~Tmlm-T‘(ml 1~T(3|»(1nTn>21))-Tum:)]u/f' . and the thermal force vector t contains
information on the boundary conditions.

2.4. Mechanical analysis: problem formudation

Given the temperature field generated by the applied temperatures T+, Ty, and 7\, T
obtained in the preceding section. we proceed to determine the resulting displacement and
stress fields. This is carried out for arbitrary mechunical loading applied to the surfaces of
the composite in the x,-v; plane. excluding shearing in the x, direction.

2.4.1. Equations of equilibrium. The stress field in the subcell (xffy) of the (p.g,r)th cell
generated by the given temperature field must satisfy the equilibrium equations

o e

[E7:
ANl

N A TR D I (28)

where the operator ¢, has been defined previously. The components of the stress tensor,
assuming that the material occupying the subcell (2f5;) of the (p. ¢, r)th cell is orthotropic,
are related to the strain components through the familiar generalized Hooke’s law :

G = O T (29)
where ¢/ are the elements of the stiffness tensor and the elements """ of the so-called
thermal tensor are the products of the stiffness tensor and the thermal expansion coefficients.
The components of the strain tensor in the individual subcells are. in turn, obtained from
the strain-displacement relations

P = T = 1203 (30)
Given the relation between stresses and displacement gradients obtained from eqns (29)
and (30). a displacement field is sought that satisfies the three equilibrium equations together

with the continuity and boundary conditions that follow.

2.4.2. Traction continuity conditions. The continuity of tractions at the interfaces sepa-
rating adjacent subcells within the unit cell (p. 4. r) 15 fultilled by requiring that

(Tl“"" ‘/:-"/"’L/ . - ﬂ-f. , Sl : (313)
Gf? i ;/;‘.‘// \"l\(l” , = ﬁ‘;/“ ' \ s (31b)
A R N 2 S (3lec)

In addition to the above continuity conditions within the (p. ¢, r)th cell, the traction con-
tinuity at the interfaces between neighboring cells must be ensured. These conditions are
fulfilled by requiring that

O_gxﬁ/w 1:;»0 Loy . — (I‘:Jx “‘,“‘/, - (323)
(Tiw” ‘1:/ ./~¥,/‘w = f]'f\ Loy L (32b)

i’ z - [ i~

G = (32¢)
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2.4.3. Displacement continuity conditions. At the interfaces of the subcells within the
unit cell (p, ¢, r) the displacements u = (u,. 4», u;) must be continuous,

1 | g (28 ()

N FE T (33a)
al Ly _ 200 pga)

ut },,»‘«- i R A (33b)
By ey 2 (g

u'’ ";l‘g{i/'{'l =nu I\..t‘:[{': s (33C)

while the continuity of displacements between neighboring cells is ensured by requiring that

u« (Wi ‘ w»,"“- 1.g.ry — u(l/l’,‘i | (Pgr) (343.)

e g2 =iy 2

7 g — 22 Py
u’ ; \(‘_ RN =u {/521:/,3111 5 (34b)
UHM’ \,"nfv . ‘,‘)bzv L= llu/“)|(;.l4:ﬂ£[l,'lg- (340)

2.4.4. Boundary conditions. The final set of conditions that the solution for the
displacement field must satisfy are the boundary conditions at the top and bottom, and left
and right surfaces. The traction vector in the cells (p, 1, r) and (p, N, r) at the bottom and
top surfaces, respectively, must equal the applied surface loads,

gt = fy)e J = =t (35)
G = ), XY = RN (35b)
where r = 1...., N,. /1, and fy, describe the spatial variation of these loads at the top and

bottom surfaces. Similarly. if the right or left surfaces are rigidly clamped (say), then
R R R (36a)
W =00 B = (36b)

whereg =1,.... N,
For other types of boundary conditions. eqns (35)-(36) should be modified accordingly.

2.5. Mechanical analvsis: solution

Owing to symmetry considerations, the displacement field in the subcell (xfy) of the
(p,g.r)th cell is approximated by a second-order expansion in the local coordinates %{*,
¥, and %' as follows:

@) s L
uj = X7 W 0,

(aft) _ (2ff) IRTANF P ET = i) 1 )2 12 )
us™ = WEGdo, + 1Y Wzi(/mm + VW0 +3 35— ;dx) Wégfgom
Faeun? _ b2 (237 Liag2 _ 1Lin2 (2f7)
+ s (3.\2 - Ehﬁq )Wz(()zg) +5 (3X3( — 4].,, )WZ(OOZ)
iy B U /o, U i EI L g2 gy
uy™? = Wilhoo, + 39 W rf(’n o, + 8 W gf{nfn*‘: (3 — Zda)ng((/L’O)O)

Coaagn 2 Vno)2 Lo y
+ L3I = LYW +5 B — LW, (3T)

where Wi{it,. which are the displacements at the center of the subcell, and W) (i = 1,2, 3)

i

must be determined from conditions similar to those employed in the thermal problem. In
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this case, there are 104 unknown quantities in the (p. ¢. r)th cell. The determination of these
quantities parallels that of the thermal problem. Here. the heat conduction equation is
replaced by the three equilibrium equations, and the continuity of tractions and dis-
placements at the various interfaces replaces the continuity of heat fluxes and temperature.
Finally, the boundary conditions involve the appropriate mechanical quantities. As in the
thermal problem, we start with the internal cells and subsequently modify the governing
equations to accommodate the boundary cells ¢y = 1.V and r = 1. N,.

It should be noted that the first equation in (37) does not contain linear terms in the
local coordinates ©5" and %{'. This follows from the assumed periodicity in the x; direction
and symmetry with respect to ¥ = 0{x = 1.2). Furthermore, the absence of a constant
term in the first equation that represents subcell center v -displacements, say W{73,,, leads
to the result that the average normal strain of the composite associated with the x; direction
is zero. It is possible to generalize the present theory by including subcell center dis-
placements associated with the x, direction that produce uniform composite strain &,,. This
generalization leads to an overall behavior of a composite, functionally graded in the x,
and x, directions, that can be described as a generalized plane strain in the x, direction.
This generalization is not trivial as it requires coupling between the present higher-order
theory and an RVE-based theory which employs a homogenization scheme (Aboudi ez al.,
1995b). In Section 2.5.5 we briefly outline how the present formulation can be modified to
admit generalized plane strain in the v, direction in arder to be able to carry out comparison
between HOTFGM-2D and finite-element analysis

2.5.1. Equations of equilibrium. In the course of sausfving the equilibrium equations
in a volumetric sense, it is convenient to define the following stress quantities:

l P, 2 Rt M ! )

Slg?//};”)-” —_ »\_"x”)‘/( SO (T )}u(}.l/,- I dfm df(ﬁﬂ) df%"‘. 38
i .arn) gr) . Vi | 2 3

V«'//i(-‘i N ! e

For {=m =n =0, eqn (38) provides average stresses in the subcell, whereas for other
values of (£, m, n) higher-order stresses are obtained that are needed to describe the governing
field equations of the higher-order continuum. These stress quantities can be evaluated
explicitly in terms of the unknown coefficients W5 by performing the required volume
integration using eqns (29), (30} and (37) in egn (38). This yields the following non-
vanishing zeroth-order and first-order stress components in terms of the unknown
coeflicients in the displacement field expansion :

Py = W0+ P8 + et L = TP TRE (39)

lﬂlwyl/;n' 1oy = _‘,/I/L;'/»:("]’:‘/V{V‘ ] H"‘:T/;i:‘m - ,‘3 hy; - Iy JT;(»/:'UJ. (40)

SVl = 1R - LR T (41)

with similar expressions for SV 0 SV L0 SV and SW o SE oy S o,
and

SV = L2, @2)

S‘\/l/{'w‘_n 0 = :‘ji"i? R, (43)

-S“:X‘x/fhl_u m o= ('([wlhﬁ')( [4"E1i);<wy , ”V‘:T{;\'m) (44)

X8

o V2 o g
S0 6, = 4/’/}/'"(‘ [N (43)
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Aw(:‘j:}[i,”). } /(I]_ (x/i ) W(ao 02 (46)
Satisfaction of the equilibrium equations results in the following sixteen relations among

the volume-averaged first-order stresses S2/,) ,, in the different subcells («f7) of the (p, ¢, r)th
cell, after lengthy algebraic manipulations (see Appendix B):

(2fdy 2 NEZL 2 i 2 Gy o
[Sl’jlql‘u_u) dv. + *Slyl/((\%l,u)'h/! + S.(?Q;[((){().I)J[?](ﬂq/ - 0~ (47)

where j = 2. 3 and. as in the case of eqn (16). the triplet («f8y) assumes all permutations of
the integers | and 2.

2.5.2. Traction continuity equations. The continuity of tractions at the subcell interfaces
associated with the periodic x, direction, eqn (31a) imposed in an average sense, is ensured
by the following relations :

[Sll ll"(:('»‘,() 5171/((;'0 0) P = 0 (48)
[S(l l_’[f"'l),tw (/\ + -S‘(lzllf]i).1‘» m/‘dz] ran = ) (49)
[S !!/(‘\\u oy + S(IJ_‘«/{‘.W)U.(H ,'d:](n.t/;ri =0. (50)

We note that eqn (32a), which ensures continuity of tractions between adjacent cells in the
periodic x, direction, is identically satisfied by the chosen displacement field representation
owing to the periodic character of the composite material in this direction.

The equations that ensure traction continuity between individual subcells, as well as
between individual cells. associated with the x. and x; directions, eqns (31b,c), and eqns
{(32b.c), are given by

[_ ]251:7:0.'! 0y hy+ S(ZZ/S().'U,U; - 6'5l:/m Loy B ] — [S(ZQ;%(‘).,O.O) + 65(27(:6?1.0)//12] a1 = () (51)
[ =S50 +3S8000 00 = 38Ty fi=] 07 1[S00y + 68823, 0, /h )71 = 0 (52)
[ 128V f+ ¥ — 0S| L1707 = [STRY 0+ 6SYRYL L] =0 (53)
[— S;X,C‘(llfo.m + ; S(%X/f(:lr,‘n,m 355 //(i(1> vyl e [S(«‘,’ 0.0.0) T 65%3;/:(‘; 0. 1)’/1 ](’w'w-_ D=0 (54)

where j = 2 and 3.

Equations (48)-(54) provide us with 44 additional relations among the zeroth-order
and first-order stresses. These relations, together with eqn (47), can be expressed in terms
of the unknown coefficients W\ by making use of eqns (39)-(46), providing a total of
60 of the required 104 equations necessary for the determination of these coefficients in the
(p.g.r)th cell.

5.3. Displacement continuiry equations. The additional 44 relations necessary to deter-
mine the unknown coefficients in the displacement field expansion are subsequently obtained
by imposing displacement continuity conditions on an average basis at each subcell and
cell interface. The continuity of displacements in the periodic x, direction at each subceli
interface of the (p. ¢, r)th cell. eqn (33a). is satisfied by the following conditions :

{d, ) ?';y‘n}m +d> W‘Ifllff‘),())]u}.‘/” =0 (35)

ALf 1 7(23) (267) 1Wpawr) _.
[W 2000 ('{ W ‘1 ())m - W:((Inm) d W° 4;00)] Pt =0 (56)
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[ = d TR, — S — d S 7 = 0, (57)

The displacement continuity between neighboring cells in the periodic x, direction, egqn
(34a), is automatically satisfied by the chosen displacement field representation which
reflects the periodic character of the composite 1n this direction.

The displacement continuity conditions at the inner surfaces. eqns (33b,c), as well as
between neighboring cells. egns (34b.c). in the FG v and v, directions, vield

[ iyl W+ AT = B+ A 0 s WS, 9 = 0 (58)
[W‘g"f,b’.,,+ B W+ h Wi e = [l - e Wl + 11| et N EaA (59)

[+ U L = s e G = R W e =0 (60)
[ S0, + s SR+ 0 = I+ WG 7 (6])

[ = L WS+ W, — Wi« LIS L BWSEL ] = 0 (62)
(WS, 5 R = LT 1 = [ = g [T ) e (63)

[, -+ S+ LI = W = R = LSRN =0 (64)
(W00, 4 L WS ) = [k = S W ] (65)
Equations (33) (65) comprise the required additional 44 relations.

2.5.4. Gorerning equations for the unknown cocfficients in the displacement expansion.
The equilibrium equations. eqn (47). together with the traction and displacement continuity
equations. eqns (48)-(54) and (35)-(635), respectively. altogether form 104 equations in the
104 unknowns W72 which govern the equilibrium of a subcell (xf§7) within the (p, g, r)th
cell in the interior. As in the thermal problem, a different treatment must be adopted for
the boundary cells (p.1.7). (p. N,.r). and (p.g. 1) and (p.q. N,). For (p,1.r), the above
relations are operative. except egns (31) and (52). which follow from the continuity of
tractions between a given cell and the preceding one. These eight equations must be replaced
by the conditions of continuity of tractions at the interior interfaces of the cell (p, 1,#) and
by the applied tractions at v, = 0. eqn (35a). For the cell (p. N,.r). the previously derived
governing equations are operative except for the four relations given by eqns (59) and (61)
which are obviously not applicable. These are replaced by the imposed traction conditions
at the surface x, = H. eqn (35b). Similar arguments hold for boundary cells (p, ¢, 1) and
(p,¢. N,). Consequently. the governing equations at both interior and boundary cells form
a system of 104NV linear algebraic equations in the tield variables within the cells of the
functionally graded composite. The final form of this syvstem of equations is symbolically
represented below

KU =f. (66)

where the structural stiffness matrix K contains information on the geometry and thermo-
mechanical properties of the individual subcells (x/5) within the cells comprising the
functionally graded composite. the displacement coetheient vector U contains the unknown
coefficients that describe the displucement field in each subcell. i.e. U = [Uf, ..., Upid']
where U = [W e B s, )" ' and the mechanical force vector f contains infor-
mation on the boundary conditions and the thermal loading effects generated by the applied
temperature.
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2.5.5. Extension to generalized plane strain in the X, direction. As indicated previously,
the present formulation in which the displacement components within the subcell (xfy) of
the (p.q.r)th cell are expanded in accordance with eqn (37) leads to the result that the
strain &) averaged over the entire volume }" = (d, +d) HL occupied by the functionally
graded composite is zero.

(xff)

RN
7. = E.. z z P B () (67)

[t is frequently desirable to obtain a generalized plane strain situation where &, = non-zero
constant. This can be achieved by adding a constant term to the first equation in (37) and
applying a homogenization procedure in the v, periodic direction. It can be shown that the
only equation affected by this process is eqn (55) which must be replaced by (Aboudi et al.,
1995)

[ Wi+ W = (dy +da)Ey (68)

where &, 1s an unknown value that must be determined from the condition that &,, = 0,
where G, is the average of 6" over the entire volume of the composite :

\ A ~
- - - RV PaET S
T 2_ 2 2 v = 0. (69)
; B !

3 APPLICATIONS

The approach outlined in the foregoing is employed to investigate the response of a
symmetrically laminated B;Ep-Ti plate subjected to a uniform temperature change of
—154.45 C. This temperature change simulates cool down from the fabrication temperature
which induces residual stresses into the individual plies owing to a thermal expansion
mismatch between the boron/epoxy and the titanium plies. The residual stress fields exhibit
large gradients near the free edges of the laminate which were investigated by Herakovich
(1976) using the finite-element approach. Herein, we first compare the finite-element results
for the stress fields near the free edge with the predictions of HOTFGM-2D, treating the
boron/epoxy (B/Ep) plies as homogeneous with equivalent effective (or homogenized)
properties. This comparison demonstrates the capability of the new coupled theory to
capture large gradients in the stress fields at geometric and material discontinuities (i.e.
along interfaces at the free edge of a laminated plate) in the presence of a spatially uniform
temperature field. Subsequently, the effect of microstructure of the B/Ep plies on the free-
edge fields is investigated in view of the large diameter of the boron fibers and relatively
small thickness of the B,Ep plies. Finally, the utility of nonuniformly distributing (i.e.
functionally grading) boron fibers in the BEp plies near the free edge to reduce the large
stress gradients in this region is demonstrated.

The cross-section geometry of the investigated laminate is given in Fig. 3. The thickness,
designated by H in the figure. and the width /. produce a laminate with an aspect ratio of
L:H = 12.5. The direction of the boron fibers in the external B/Ep plies is parallel to the x,
(out-of-plane) axis, along which the laminate is considered to be infinitely long. The volume
fraction of the fibers is 0.50. The resulting macroscopic thermo-mechanical properties of
the B/Ep plies and the titanium inner sheets are given in Table 1. As in Herakovich (1976),
these properties are considered to be temperature-independent. Comparison of the thermal
expansion coeflicients of the B/Ep plies and the titanium sheets reveals a significant mis-
match in the transverse direction (along the x; axis). with a smaller mismatch in the
out-of-plane direction. Figure 4 illustrates the axial and transverse thermal expansion
coeflicients. x} and 2%, respectively. of the B/Ep ply as a function of the fiber content v,
generated using the method of cells micromechanics model (Aboudi. 1991). Included in the
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Fig. 3. Cross-section of a [B Ep-T1). laminate.

Table 1. Material properties of the boron epoxy plies tv. = 0.50) and titanium sheets

Material E¥ (GPa)y  E¥(GPa) vt 2110 C Y 2% (107° C)
B/Ep 206.8 18.6 0.21 45 30.6
Ti 118.6 118.6 0.34 XS 8.5

Subscripts A and T denote axial and transverse quantities. respectively.

10-6/°C 30

10 y

Vi

Fig. 4. Effective normal and transverse thermal expansion coefficients of B/Ep as a function of the
fiber volume fraction. Also shown in the figure is the CTE of the isotropic titanium sheet.
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Table 2. Material properties of boron fiber and epoxy matrix

Material EA(GPay v 2 (107%°C™H
Boron fiber 417.0 0.13 6.0
Epoxy matrix 5.24 0.35 50.0

£ and v denote the Young's modulus and Poisson’s ratio, respec-
tively. and » 1s the coefficient of thermal expansion.

figure is the thermal expansion coethcient of the isotropic titanium sheet. The thermoelastic
properties of the boron fibers and the epoxy matrix used to generate this figure are given
in Table 2. The graphical results shown in Fig. 4 indicate that the large thermal expansion
mismatch between the B/Ep and the Ti plies in the transverse direction (i.e. x3;) can be
reduced by increasing the fiber content of the B/Ep ply above the current value of 0.50. It
1s expected that the reduction of the transverse CTE mismatch will lead to a decrease in the
transverse residual stresses and thus the severity of the free-edge stress gradients. Figure 4
thus provides a motivation for using functionally graded fiber architectures in the vicinity
of the free edge to decrease the transverse thermal expansion mismatch in this region, and
thus reduce the interlaminar stresses. Since the interlaminar stress field is a localized effect,
it is reasonable to expect that it is sufficient to limit grading of the fiber content in the B/Ep
plies to the immediate vicinity of the free edge.

3.1, Comparison of HOTFGM-2D and FE predictions bused on homogenized B/ Ep properties

Figure S presents comparison of the normal (g,,, 01, 64;) and shear (o,;) stress
distributions in the titanium sheet along the interface separating the B/Ep and Ti plies (see
Fig. 3) generated using HOTFGM-2D and the finite-element analysis of Herakovich (1976).
These results were obtained using the effective or homogenized thermo-mechanical proper-
ties of the B/Ep and Ti plies given in Table 1. As stated previously, the illustrated stress
distributions were induced by subjecting the [B,/Ep-Ti], laminate to a uniform temperature
change of —154.45 C. Since the interfacial traction continuity conditions are imposed in
an average sense in HOTFGM-2D. the stress components which are tractions along an
interface are averaged as well. Hence the stress components a5, and a,; in a given subcell
(xf7) of the cell (p. g.7) obtained from the higher-order theory were calculated as follows:

| ovidavdsp. j=2.3.

o oD

7>

o

The stress components ¢{%' ' and ¢4 '. on the other hand, were not averaged.

The finite-element results were generated using three different meshes, indicated by
B-1, B-2 and B-3 in the figure. with each successive mesh undergoing increasingly greater
refinement until satisfactory convergence was obtained. Due to the symmetry of the con-
sidered plate with respect to the v, and v, axes. only one quarter of the plate needs to be
analysed (see Fig. 3) under appropriate boundary conditions which reflect these symmetries.
The higher-order theory results were generated by discretizing the quarter-plate in the
manner shown in Fig. 6. The level of discretization at the free edge shown in this figure was
determined by performing a convergence studyv in which increasingly greater number of
subcells was introduced into the region immediately adjacent to the free edge, defined by
049L < x; < 0.5L (see Fig. 6). starting with two subcells and ending with 100 subcelis.
Figure 7 illustrates the relatively rapid convergence of the maximum normal stresses o5,
and ¢, (in the titanium ply) along the interface at the free edge with increasing number of
free-edge subcells. Similar results were obtained for the remaining stress components,
thereby justifying the employed level of discretization shown in Fig. 6.

The stress profiles presented in Fig. 5 exhibit large stress gradients in the immediate
vicinity of the free edge. Away from the free edge, these stress distributions attain uniform
values that can be predicted using the classical lamination theory for sufficiently large L/H
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Fig. 5. Normal and shear stress distmbutions m the utanium ply at the terlace separating B Ep
and Ti phies due to a temperature change of A7 - 13445 ¢ Comparison between the predictions
ot HOTEGM-2D and FE analvsis

aspect ratios. The rapid decay of the interlaminar stresses to their lamination theory or far-
field values occurs over a distance that is approximately one laminate thickness A from the
free edge. The far-field values of the normal stresses ¢,,. ¢+, and a5, predicted by the coupled
higher-order theory are 29.9. 0.0. and — 54.95 MPa. respectively. The far-field value of the
shear stress -; 1s 0.0. These results coincide with the lamination theory predictions.

In the vicinity of the free-edge. the large gradient and magnitude of the o, stress
component obtained from the coupled higher-order analysis compares very favorably with
the finite-element results generated with the most refined mesh. The behavior of the g,
stress component near the free edge predicted by the higher-order theory also compares
favorably with the finite-element results. lying between the B-1 and B-3 mesh predictions.
This component is often responsible for delamination mitiation at the free edge when it 1s
tensile, as is the present situation. The normal stress component g, is in the direction of
the free edge and thus has to vanish on the lateral surface ;- L = 0.5, Both the higher-order
theory and finite-element predictions indicate that this stress component does tend to zero
with decreasing distance from the edge. The finite-clement results indicate an initial decrease
in this stress component relative to the far-ficld value (1.c. an increase in the magnitude of
the compressive stress) followed by rapid reversal and decay to zero. The magnitude of this
initial decrease predicted by the HOTFGM-2D anulvsis. however. is substantially smaller
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Fig. 5 (continued)

relative to the finite-element predictions. On the other hand, the magnitude of the normal
stress o,; in the immediate vicinity of the free edge is closer to zero than that predicted by
the finite-element analysis using the most refined mesh (B-3). Finally, the comparison of
the shear stress components o,; predicted by the two approaches is also favorable. This
stress component also undergoes a rapid reversal at the free edge, initially decreasing
(i.e. increasing in magnitude), then reversing direction and rapidly decaying to zero. The
magnitude of the maximum shear stress at the reversal point predicted by the coupled
higher-order theory is somewhat smaller than that predicted by the finite-element analysis.
On the other hand, the shear stress at the free edge predicted by HOTFGM-2D is much
smaller (in fact almost zero) than that predicted by the finite-element approach.

The comparison of the stresses in the titanium sheet at the B/Ep-Ti interface generated
using the HOTFGM-2D and finite-element approaches indicates that the major features of
the near free-edge stress fields are correctly captured by the coupled higher-order theory.
While in some instances the actual magnitudes are not in perfect agreement, it is not clear
at this point whether the problem lies with the HOTFGM-2D or finite-element results since
the discrepancies, when they occur, are not sufficiently consistent to point to either of the
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Fig. 6. Quarter-plate volume discretization used to generate the HOTFGM-2D results.

two approaches as a potential culprit. It is clear, however, based on the presented compari-
son, that the coupled higher-order theory is sufficiently sensitive to capture the large stress
gradients, and even rapid stress reversals (see o, distribution in Fig. 5) that occur in regions
of geometric discontinuities such as the free edge. It is also reassuring that convergent
results can be obtained with a sufficient level of volume discretization. This sets the stage
for investigating the effect of microstructure on the free-edge stress fields (using the quarter-
plate discretization shown in Fig. 6).

3.2. Effect of microstructure of the B/Ep plies on the free-edge stress fields
The results presented heretofore have been generated by treating the B/Ep plies as
homogeneous with certain effective or homogenized thermo-mechanical properties. These

150 r —+ i ) }
Il L L4 g
120 . ¢ ¢ 1
L
[ ]
i [ ]
90 - 5 5 - o o o o] 3
G11, 022 o
! e}
L]
(MPa) 0
60 4 1
‘.
30 - 1
O Max oy, at the free edge
o Max oy, at the free edge
0 - 1 3 )
[¢] 20 40 60 80 100

No. of subcells at the free edge

Fig. 7. Convergence behavior of the maximum normal stresses 6., and o, (in the titanium ply) at
the B/Ep-Ti interface in the subcell next to the free edge as a function of the number of subcells in
the free-edge region 0.49L < x. < 0.51.
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properties can be either measured directly in the laboratory or determined using a micro-
mechanics scheme when macroscopically homogeneous deformation fields are imposed.
However, when the reinforcement size (i.e. fiber diameter) is large relative to the thickness
of a composite ply, which is the case with boron-reinforced and silicon carbide-reinforced
composites, the meaning of material property becomes fuzzy in the presence of large stress
gradients as previously discussed. This is the case in the present situation at the free edge
given the large boron fiber diameter relative to the thickness of the B/Ep ply. It is thus
important to characterize the error introduced in the analysis of free-edge stress fields based
on the homogenized properties of the B.Ep ply.

Figure 8 illustrates eight configurations of the [B/Ep-Ti], laminate with increasingly
refined microstructure of the B/Ep plies at the free edge that were investigated in order to
determine the effect of the microstructure on the stress fields. The overall dimensions of the
laminate and the individual plies are the same as in the previous problem with homogenized
B/Ep properties. The number of boron fibers in the through-thickness direction of the B/Ep
plies was taken as two, and the fiber dimensions were chosen to yield the same fiber volume
fraction of 0.50 as in the previous problem. The properties of the boron fiber and epoxy
matrix reported in Table 2 produce the same homogenized properties for the B/Ep plies as
those employed previously. These properties were assigned to the fiber and matrix phases
in the regions of the B/Ep plies shown in Fig. 8 with increasingly refined microstructures.
Outside of those regions, homogenized thermo-mechanical properties were employed for
the B/Ep plies.

Figure 9 presents the normal stress o5, in the titanium sheet at the B/Ep-Ti interface
for the eight configurations shown in Fig. 8. This stress component, due to its tensile

epoxy matrix

/~ boron fiber

I

 B/Ep with homagenized properties:

| SB/E
H2 i
we @
/2 . .
)_B/E ele
W b C ®

Fig. % Schematic of eight configurations of the (B Ep-Ti]. laminate showing increasingly refined
microstructure at the free edge.
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character, is responsible for the mitiation of delamination. and thus s of particular import-
ance for the considered configuration subjected to the given thermal load. Examination of
the individual figures for each configuration reveals an increasingly complex character of
the stress distribution near the free edge with increasing refinement of the microstructure
that is due to the interaction with the individual boron fibers in the adjacent B/Ep ply. The
stress distributions are characterized by rapid oscillations that coincide with the locations
of the boron fibers in the B.Ep plies directly above the titanium sheet. The reversals in the
sign of the stress oscillations could potentially have an effect on the delamination process.
More importantly, however. the maximum normal stress at the free edge increases with
increasing refinement of the microstructure. This 1s clearly illustrated in Fig. 10 where the
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Fig. 9. Normal stress a-. distitbutions in the titanium ply at the interface separating B/Ep and Ti
plies due to a temperature change of A7 = 154,45 C for the eight configurations of Fig. 8.
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Fig. 9 (continued)

maximum stress 4., at the free edge for the eight different configurations has been nor-
malized by the corresponding stress obtained from the HOTFGM-2D analysis using homo-
genized B/Ep properties. As is observed, the actual maximum stress at the free edge in the
presence of microstructure asymptotically approaches a uniform value with increasing
number of fiber/matrix cells in the B/Ep ply at the free edge. At least seven cells are required
in the horizontal direction at the free edge to capture the actual maximum value of ¢4, in
the titanium ply. More importantly, the actual maximum stress is 35% greater than the
corresponding stress obtained using homogenized properties of the B/Ep plies. This is a
significant difference that cannot be overlooked in predicting the onset of delamination,
revealing the shortcoming of the homogenized continuum approach in the presence of
course microstructure and large stress gradients.
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Fig. 10. Normalized maximum stress a..in the titanium ply at the tree-edge of the laminate at the

interface separating B Ep and 1 plies owing to a temperature change of A7 = —154.45 C as a

function of the refined microstructure for the eight contigurations of Fig. ¥. The normalization is

performed with respect to the corresponding maximum stress obtained from the analysis based on
homogenized B Ep properties

3.3, Delaminaiion control through miicrostructural tailoring of the B Ep plies

As illustrated in the preceding sections. the large thermally induced interlammar
stresses in the vicinity of the free edge. and in particulur the large tensile normal o, stress
commonly called peel stress. may be sufficiently large to initiate delamination during
fabrication cool down or subsequent mechunical loading. It is of technological interest to
reduce this stress component in order to increase the load-beuring capability of such
laminates. In this section we investigate the possibility of accomplishing this through the
use of functionally graded architectures in the B Ep plies,

We choose two approaches to reduce the peel stress at the free edge. In the first
approach. we selectively remove tibers (rom the B Ep plies in the vicinity of the free edge
in order to create a local clamping in the vertical direction at the lateral surface of the
laminate. It is presumed that this localized clamping arises from the tendency of the matrix
phase to contract more than the surrounding B Ep material under the given temperature
change. and that the contraction in the vertical direction has a greater effect on the stress
field than the contraction in the horizontal direction. Since cight fiber matrix cells in the
B/Ep plies at the free edge are sufticient to capture the actual stress tield in the presence of
microstructural details (see Fig. 10). we use this configuration to test the hypothesis
described above. Figure 11 presents the interlaminur peel stress profiles generated by
removing one and two columns of fibers in the vicinity of the free edge. Figure 11a illustrates
the interlaminar peel stress distribution for the basehne eight-cell configuration with no
columns of fibers removed. while Fig. 11b-d presents the corresponding distributions for
the configurations with column 2. columns 3 and 4. and columns 2 and 3 removed. The
results indicate that the removal of the columns of fibers generally tends to lower the normal
peel stress in the regions directly below the missing fibers. Furthermore, the magnitude of
the compressive stress in the cells adjacent to the free edge 15 also incrcased. However. the
maximum tensile stress at the free edge itself is actually increased when the fibers are
removed. This is tllustrated in Fig. [2 which presents the maximum {ree-edge peel stress in
the configurations with the missing fibers normalized with respect to the corresponding
value of the baseline configuration given in Fig. | 1a. The greatest increase in the maximum
value of the free-edge peel stress occurs in the configuration with the columns 2 and 3
removed. while the smallest increase occurs in the configuration with the columns 3 and 4
removed. Thus it appears that the increased tendency of the matrix with the missing fibers
to contract in the vertical direction is more thun oftset by the horizontal contraction
tendency. The overall etfect 1s to increase the thermal expansion mismatch between B/Ep
and Ti plies in the horizontal direction. resulting in the mcrease ot the maximum peel stress
at the free edge.
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Fig. 11, Effect of removing tibers near the frec-edge of the laminate on the normal stress s,

distribution in the titanium ply at the interface separating B-Ep and Ti plies owing to a temperature
change of AT = - 15445 C.

The above excrcise also sheds light on the effect of imperfections in fiber spacing near
the free edge that may arise due to poor fiber placement control during fabrication. The
results suggest that a localized increase in the thermal expansion mismatch between adjacent
plies caused by missing fibers near the free edge will have a detrimental effect on the
laminate’s delamination resistance.

In the second approach used to reduce the interlaminar peel stress at the free edge, the
fiber spacing in the horizontal direction was decreased in a linear manner with decreasing
distance from the {ree edge. This effectively increases the local fiber volume fraction in the
B Ep plies which. in turn. decreases the transverse thermal expansion mismatch between
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Fig. 12, Maximum stress 0. 10 the Utanium ply at the frec-edge of the laminate at the interface
separating B Ep and Ti plies due to a temperature change of A7 = —154.45 C obtained from
distributions of Fig. 11. normalized with respect to the corresponding maximum stress obtained
from the configuration with umiformiy spaced fibers.

the adjacent plies at the free edge as is observed in Fig. 4. The results presented in Figs 11
and 12 indeed indicate that the local fiber volume fruction has a significant effect on the
interlaminar stresses at the free edge. thereby supporting this second approach in reducing
the peel stress. In addition to decreasing the horizontal fiber spacing in the vicinity of the
free edge. the two rows of fibers were also shifted vertically in a uniform manner in order
to bring them closer to the B:Ep- Ti interface and thus decrease the local thermal expansion
mismatch in the thickness direction.

The functional grading of the fiber distribution in the horizontal direction was
accomplished as follows. The total horizontal distunce occupied by the eight fiber cells
was 2032 um. The distance of the center of the first fiber from the free edge was taken to be
97.36 um. This was chosen such that the distance between the eighth fiber and the homo-
genized B/Ep material was 2159 um. This is exactly one half of the width of the unit cell
with a fiber volume fraction of 0.50 in the unitormly spaced configuration. The distances
between the centers of the eight fibers were linearly increased with increasing distance from
the free edge in the manner illustrated in Table 3.

Figure [3 presents the four different fiber architectures near the free edge in the B/Ep
plies that were generated using the combination ot horizontal and vertical shifting of the
boron fibers. The relative locations of the fibers with respect to the dimensions of the B/Ep
plies are the same as in the actual configurations. The baseline configuration is the uniformly
spaced configuration considered previously with center-to-center fiber spacing of 254.0 um,
shifted horizontally towards the free edge such that the location of the center of the first
fiber coincides with the center of the first fiber in the lincarly spaced configuration (i.e.
97.36 um from the free edge). The second configuration was generated from the first by

Table 3. Center-to-center distances between fibers o (he welis at the free edge in the linearly spaced
configurations

Adjacent fibers from the free edge Center-to-center distancee between adjacent fibers (um)
Free edge 1 9736

12 20108

23 290

34 RRIVANY

43 14550

S 6 260 35

67 27820

7N 29000

8- homogenized B Ep 21590
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Fig. 13, Schematic of different fiber distributions in the B/Ep ply near the free edge.

uniformly shifting the two rows of fibers in the vertical direction while preserving the
uniform horizontal fiber spacing. The third configuration was generated by linearly increas-
ing the fiber spacing in the horizontal direction with increasing distance from the free edge,
in the manner described previously. while preserving the vertical spacing of the baseline
configuration. Finally, the fourth configuration was obtained from the third by vertically
shifting the two rows of fibers in the same manner as was used to generate the second
configuration. The total fibre volume fraction of the B/Ep region with the four fiber
architectures considered was 0.50. The local fiber volume fractions of the vertical columns
of cells in the uniformly spaced and linearly spaced fiber configurations are given in
Table 4.

The resulting peel stress distributions along the B/Ep-Ti interface in the four con-
figurations caused by the uniformly applied temperature change of — 154.45°C are illus-
trated in Fig. 14. Comparing the peel stress distribution in the uniformly spaced baseline
configuration (Fig. 14a) with the stress distribution in the second configuration (Fig. 14b)
we observe increased peel stress oscillations in the regions directly below the fiber locations.

Table 4. Local fiber volume fractions in the cells at the free edge

Cell number from free edge v, (uniform fiber spacing) v, (linearly increasing fiber spacing)
1 .55 0.63
2 .50 0.60
K .50 0.56
4 0.30 0.52
s 0.30 0.49
6 0.50 0.46
7 130 0.44
% (.43 0.34

The fiber volume fraction in the 1st and th cells of the uniformly spaced configuration differs from 0.50 owing
to horizontal shift of the fiber architecture towards the free edge as explained in the text.
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Fig. 14. Normal stress ., distributions n the titanium ply at the B Ep- Ti interface near the free

edge for the differently distributed tibers shownan Fig. 13

The relative increase in the oscillations is caused by the reduced distance between the
interface and the bottom row of fibers produced by the vertical shift. The vertical shift also
produces a reduction in the maximum peel stress at the free edge relative to the baseline
configuration. The peel stress distribution in the configuration with the linearly spaced
fibers (Fig. 14¢) exhibits decreasing oscillations with decreasing distance from the free edge
relative to the baseline configuration. A substantially greater decrease in the maximum peel
stress at the free edge relative to the baseline configuration is also observed, as compared
to the free-edge peel stress reduction observed in the second configuration. Finally, the peel
stress distribution in the fourth configuration presented in Fig. 14d exhibits characteristics
that are peculiar to the second and third configuration. Here. we observe an increase in the
peel stress oscillations relative to the baseline configuration that decrease with decreasing
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Fig. 15. Maximum stress .- in the titanium ply at the free-edge of the laminate at the interface
separating B:Ep and Ti plies due to a temperature change of AT = —154.45 C obtained from

distributions of Fig. 14, normalized with respect to the corresponding maximum stress obtained
from the configuration with uniformly spaced fibers.

distance from the free edge. The reduction in the maximum peel stress at the free edge also
appears to be substantial. and slightly greater than in the third configuration. A more
precise comparison of the maximum peel stress values at the free edge in the functionally
graded configurations is presented in bar chart format in Fig. 15, normalized by the
corresponding value of the uniformly spaced baseline configuration. As is observed, the
greatest reduction in the peel stress (i.e. ca 25%) occurs when the fibers are both linearly
spaced and vertically shifted. When the fibers are linearly spaced without the vertical shift,
the reduction is approximately 24°%,. indicating that the additional vertical shift does not
play a significant role in this case. In fact, the increased oscillations in the peel stress
distribution caused by the vertical shift may not be desirable in some situations. Alter-
natively, when the fibers are vertically shifted without decreased horizontal spacing, the
peel stress is reduced by a modest 9%. Thus it appears that the major contribution to the
reduction of the free-edge peel stress comes from functional grading in the horizontal
direction.

It is interesting to relate the reducton in the peel stress produced by the functional
grading of fiber architecture to the reduction in the transverse thermal expansion mismatch
between B/Ep and Ti plies with increasing fiber volume fraction illustrated in Fig. 4. As
observed in the figure. the transverse thermal expansion mismatch decreases rapidly with
increasing fiber volume content or iber volume fractions greater than approximately 0.05.
As observed in Table 4, the local fiber volume fractions in the first three vertical columns
of cells in the uniformly spaced configurations are 0.55. 0.50 and .50, compared to 0.63,
0.60 and 0.56 in the linearly spaced configurations. Figure 4 indicates that the transverse
thermal expansion coeflicients in a B Ep ply with fiber volume fractions of 0.50, 0.55 and
0.63 are 32.50. 29.52 and 24.91 {10 " C '), respectively. The relatively modest decrease in
the local thermal expansion mismatch (approximately 14%) in the immediate vicinity of
the free edge (i.e. the first three fibers) achieved by a correspondingly modest increase in
the local fiber volume fraction (approximately 14%) thus produces a substantial reduction
in the peel stress at the free edge (approximately 25%). This obviously has technologically
significant implications.

4. SUMMARY AND CONCLUSIONS

A previously developed theory for the elastic response of metal matrix composites with
a finite number of uniformly or nonuniformly spaced inclusions or fibers in the thickness
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direction subjected to a through-thickness thermal gradient has been extended herein to
enable analysis of material architectures characterized bv nonuniform fiber spacing in
two directions. In this new approach. the microstructural and macrostructural details are
explicitly coupled when solving the thermomechanical boundarv-value problem. Coupling
of the local and global analyses allows one to rationally analyse the response of polymeric
and metal matrix composites such as B:Ep. B: Al and SiC:TiAl that contain relatively few
through-thickness fibers. as well as so-called functionally graded materials with con-
tinuously changing properties due to nonuniform fiber spacing or the presence of several
phases. For this class of emerging composites. it is difficult. if not impossible. to define the
representative volume element (RVE) used in the traditional micromechanical analyses of
macroscopically homogeneous composites (Hill. 1963).

The extension of the theory to material architectures functionally graded in two
directions makes possible the analysis of laminated composite plates with finite dimensions
in one plane subjected to combined thermomechanical loading. In particular, the tech-
nologically important interlaminar stress fields in laminated composite plates in the vicinity
of the free edge can be analysed with the outlined approach. The mismatch in the thermo-
mechanical properties between adjacent plies 1 layered composites gives rise to severe
stress concentrations at the free edge which often cause delamination failures. A review of
the free-edge problem and a discussion of the associated failure modes in laminated com-
posites has been given by Herakovich (1989).

The presented comparison of interfaminar stresses in a symmetrically laminated B/Ep-
Ti plate subjected o a uniform temperature change generated using the new coupled
approach and the finite-element method based on homogenized properties of the individual
plies demonstrates the capability of the proposed theory to capture the large stress gradients
at the free edge. Explicit incorporation of the microstructure of the B/Ep plies in the
interlaminar stress calculations using the coupled theory produces maximum value for the
peel stress at the free edge that is approximately 35% higher than the corresponding value
based on the homogenized B Ep ply properties (Fig. 10). This requires explicit consideration
of at least seven columns of fibers localized at the free edge. Microstructures with fewer
fibers produce stress fields that do not adequately reflect the actual stresses. Thus the
calculation of the technologically important interlaminar peel stress at the free edge of a
laminate based on the homogenized continuum approach substantially underestimates the
actual stress fields. leading to unsafe designs.

In order to reduce the high interlaminar peel stress at the free edge, the local thermal
expansion mismatch between the B.Ep and Ti plies must be reduced. This can be achieved
by altering the microstructure of the B/Ep plies at the free edge through functional grading
of the boron fiber distribution. By decreasing the fiber spacing with decreasing distance
from the free edge the local fiber volume fraction in the B/Ep plies is increased, thus
decreasing the transverse thermal expansion mismaltch as observed in Fig. 4. Substantial
reductions in the free-edge peel stress can be achieved by a relatively modest increase in the
local fiber volume {raction directly at the free edge (see Fig. 15 and Table 4).

It should be emphasized that the new theoryv presented herein makes possible the
investigation of the effects of fiber distribution and fiber shape in functionally graded
composites. Recent investigation of these effects in doubly-periodic composites was con-
ducted by Arnold er «f. (1995) using the concept of a repeating unit cell. Such effects can
now be investigated in the presence of a continuously changing microstructure in con-
junction with the coupling of the micro and macro-structural response.

Finally. in previous investigations the authors have demonstrated that the inclusion of
inelastic effects in the analysis of functionally graded materials may be important in the
presence of large temperature gradients in applications involving one-dimensional version
of the higher-order theory (cf. Pindera er al.. 1994 Aboudi ¢/ af.. 1995a). Others have
demonstrated the importance ot inelastic effects within the context of the free-edge problem.
For example. Drake er al. (1993) and Williamson ¢f «l. (1993) employed the finite-element
method to study the residual stresses that develop at graded ceramic-metal interfaces joining
cylindrical bodies made of metallic and ceramic materials. The gradation was modeled
using a series of perfectly bonded cylindrical lavers, with cach laver having slightly different
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properties. Their results demonstrate the importance of plasticity effects in the analysis of
graded and non-graded interfaces. The authors also showed that in some cases optimization
of the microstructure of graded layers is required to achieve reduction in certain critical
stress components that control interfacial failure. Along similar lines. Suresh et al. (1994)
studied the response of elastoplastic bimaterial strips subjected to cyclic temperature vari-
ations. Closed-form solutions were derived using simple beam and plate theories to analyse
the stresses and curvature that develop in a bimaterial configuration for the considered
thermal loading. In addition, finite-element formulation was employed to capture other
features not included in the simple analytical models. In particular, the authors showed
that the plastic flow along the interface separating the two materials at the free edge can be
modified substantially by altering the constraints at the edges of the strip. Therefore,
in subsequent investigations inelasticity effects will be incorporated into the theoretical
framework of HOTFGM-2D.
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APPENDIX A: THERMAL ANALYSIS

Heat conduction equations
Multiplying eqn (1) by (£} (3¥")" (£4")". where L. m. n = 0. 1. or 2 with /+m+n < 2, and integrating by
parts. using the temperature expansion given in eqn (9). the following equations are obtained :

LG + LS50 + L0 =0 (Al)
Lo = Q% = 0 (A2)

LYK, Q. = 0 (A3)

S BL G L L) 207 e, = 0 (A4)
SRS LL L 3L L) 20850 =0 (AS)
L LR e 3R 200 = 0. (A6)

where Q¥ has been defined previously in eqn (10), and

L S L IPRVECAS SRRV INN R Y BT
Lo, = e ‘ L l N [q}"‘ ’( l: ) ¢y [ (2 I)Jd.\‘;/'d.\‘; (A7)
G S d 2 A . \ /
,’I:_M rey A FERUEN ) L)
L= o ) || [q (SRR '/’*’i"ﬂdfa” dxy’ (A8)
[ s ' =/
T o ,
L3, = 7/7(_ ) } ] o [t/e"‘\ AR L/( - 3—)]d~f1"df‘:”- (A9)

Inthe above: n=0or 1. g™ (+d, 2. ¢ (£h2). ¢ ( 21" 2) denote the interfacial fluxes at ¥ = i%d,.
= i%h}f‘”. = il;l”ﬂ respectively  and v = d, b 1" 1s the volume of the subcell (afy) in the (p.q.r)th
cell.

Equations (A1)-(A6) provide relations between the zeroth-order and first order heat fluxes Q4 and the
interfacial fluxes L%’ = Explicit expressions for the interfacial fluxes L%, given solely in terms of Q{/,, are
obtained through the following sequence of manipulations. noting that eqns {A2) and (A3) already provide direct
relations between Q947 , and L1} ,,. and Q¢#), and LY41 .. First. substituting eqn (A1) into (AS) and (A6),
respectively, gives the following direct expressions for LU ,, and L300

L e = 120800, e (A10)
Liiha, = 12030 1 (All)

Then upon substitution of eqns (A10) and (A11) into (A1) we obtain the following expression for L) ).
Lyin, = = 120050 o = Quhn 177 (A12)

Equations (A10) to (A12) will be used to reduce the heat conduction and heat flux continuity equations to
expressions involving only the heat flux quantities Q.}%,,,. These can subsequently be expressed in terms of the
fundamental unknown coefficients 7%, appearing in the temperature expansion given by eqns (9). using eqns

(11)-(15).

Heat flux continuity equations
The heat flux continuity conditions (3)- (4) are imposed on un average basis at each subcell and cell interface.
The heat flux condition in the x, direction is obtained using eqn (3a) n (A7), vielding

ld Lyl +d o L0 ) - 0 (A13)

We note that eqn (4a) is identically satisfied for 4 material that 15 periodic in the x| direction by the chosen
temperature field representation.

Prior to imposing the continuity conditions in the FG v.oand v directions. let us define intermediate quantities
S and g™ as follows :

U g g (A14)

l/_/ 11 Py q:;l,,'(\,‘j,,-u“u "’fl‘:/‘ Gt s (A]S)
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These quantities will simplify the algebra associated with application of the heat flux continuity requirement on
an average basis in the x, FG direction. Then substituting eqns (3b) and (4b) into the above definitions, we have

i X 20 X'x 2 L 1.

/(21 ']‘LM” — ‘/(Zz . ‘;I}l‘li),/,‘;ﬂg"q(lx "ii‘lz;‘l:h‘,""’“.z (AIG)
[ 4 2oy 2 X 1.

G g gt 0 (A1)

Adding and subtracting equal quantities to and from eqns (A16) and (A17) it can easily be verified that
2/13“,\ ‘ Pyt {” f"j: ' +q~:x2;1]tﬁ.q "o [f(j:lt‘l +g;2;)](ﬁ-47 1) (AIS)
2!/‘2”""! (o [ . 1‘372 1+g1:xz D](/n/ri +[f‘112;) +g(2:2;1]|p.q——l,r)_ (Alg)

Then using eqns (A18) and (A19) in (A8). we obtain the following heat flux continuity conditions for the x, FG
direction :

'R (Pt h, (g - Ly
17 (22 - crdt (227} 2F(x2) —_
[ - h\ L(:«[() ('\_ln + L:::ll ;.III Ty L}’m_ﬂ,m - Zio.l.n) + ?tho.am - 0 (A20)

/N e h,
(x1) 1y .22 R AN (x27) b &K
{‘L:m |_(»,+§Lzm oy — LS50 +3 ol T L%

pg-1n)
4 B (z)nl'l’).u)il =0 (A21)

Similarly. the heat flux continuity conditions (3c) and (4¢) in the remaining x; FG direction provide

/ (g 12 (pgr- 1)
i2 ! 282 2 2 -
|:7 Il L&T’(’J‘&_m + L“’(I(’) ((,| P .‘ l-‘n‘lw.(;‘n)jl - \:LL%JJ’.I ) + 5[-'51/(’)(}0)} - 0 (A22)
and
| / wan | , A , par-1
121 2 24 2 2 82
- L‘\’I/(r),l:l ) +'3L‘11((0.u.|‘ - 4 I—l‘m 0.0) + 5 Lg’%.({.l)'{' EL?:/O.UI‘Ol =0. (A23)

Equations {A10)—(A12), together with eqns (A2) and (A3), will be employed in reducing the heat flux continuity
conditions (A13). (A20)-(A23) to expressions involving only the volume-averaged zeroth-order and first-order
heat flux quantities Q3% .

Reduction of heat conduction and heat flux continuity equations

Substituting eqn (Al) into (A4), and using eqns (A10) and (All), reduces the volume-averaged heat
conduction equations to a set of eight equations given by eqn (16). Next, using the expression for L{#7 o, given
by eqn (A12), and the expression for L), given by eqn (A2). and LE%) |, given by eqn (A3), in the continuity
relations (A13), (A20)—(A23). we obtain eqns (17) and (21).

Thermal continuity equations

As in the case of the heat flux field. the thermal continuity conditions (5)—(6) are imposed on an average basis
at each subcell and cell interface. Thus substituting eqn (9) into eqns (5a—), respectively, we obtain at each subcell
interface the conditions (22). (23) and (25). Furthermore, substituting eqn (9) into eqns (6b—c) to ensure continuity
of temperature between neighboring cells in the FG directions. we obtain the conditions (24) and (26).

APPENDIX B: MECHANICAL ANALYSIS

Equations of equilibrium

Let us multiply eqn (28) by (£{")' (") (¥{")". where again [, m, n, = 0, 1, or 2 with /+m +n < 2. Integrating
the resulting equations by parts. and using the displacement expansions (37), we obtain the equations of equilibrium
in the subcell region (2f;) in the form:

I‘vi/fh}n o +J(:2,I(;6’_(Lm + K‘w};!’dllo,o) =0 (Bl)

/\lr/yii\,u o = Sl\ﬁ’(’ﬁ’.u,m (BZ)

J‘_\’r/fi\‘l m = Sf‘j’(’;:!o.m (B3)

K‘ﬁ‘(.’}’.;\ = S'\’/(‘i')).n.m (B4)

%di [3](11/50"»,1\‘ +J'3’/fi|'o_m + K‘:’,/"hfn.m] - 23(17(‘-3'].0.0) =0 (BS)
l_lfh;lq’: [Ilsi,/fh)(m + 3J(37/(’w’;u ot K(Ix/’[u)um] - 25(27;4‘:0).|,m =0 (B6)

1 2 . .\ .
E/-l“ [I'l’;/((hlh.(h + J%’/./hfn o+ 3K{z’:7€1{u.0)] - ZSSJ;I("D{O.H = 0) (B7)
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where j = 2,3 in eqns (B1) and (B3) (B7). while in equation (B2) ; = | In the above equations. S}, has been

defined previously in egn (38). and

) | 0 5 .
e = 5 il 1| [0y G0 e e ) de sy (BS)
“i'll; . .
o | 1 ' v i . \ . 1 st s . .
Tl = ][ e e e e dey (B9)
Visg PN :
Cugi ! . o I TI (Y} t =) J if)
KOV = o Y ' | [av w0y e =y de de Y. (B10)
Vigp R :
In the above: n=0 or I: r»]’v""(ii‘,d.,y i’ (ii/r,‘,""). g+ ). stand tor the interfacial stresses at
T = 4id, XY = £ R = 420" Trespectively.

Equations (B1)-{B7) provide relations between the zeroth-order and first order. volume-averaged stresses
S, and the interfacial tractions /%), .. J&, . and KU, ... Direct “one-to-one” relations are obtained

f{iam.my

through the following sequence of manipulations. noting that eqns (B2)--(B4) already provide direct relations
between S .0, and I 0. S50, and SO o SV 00, and KUN), 1. j = 2. 3. First. substituting eqn (BI)
into eqns (B6) and (B7). respectively. gives direct expressions for /Y% and KV 4.
A A LI (B11)
Kyaay = 128007 (B12)
Then, upon substitution of eqns (Bl 1) and (B12) into (B1). we have the following expression for 17, :

T AR R BT S (B13)

)

Equations (B11)-(B13) will be used to reduce the equilibrium equations and traction continuity equations (o
expressions involving only the zeroth-order and first-order. volume-averaged stress quantities St/ .. These can
subsequently be expressed in terms of the fundamental unknown coeflicients Wi, appearing in the displacement
field expansion given by egns (37). using egns (39) -(461).
Traction continuity conditions
The traction continuity conditions. egns (311 (32). are imposed on an average basis at the subcell and cell
interfaces. These conditions imply existence of certain relationships between the surtace integrals of the interfacial
traction components defined by eqns (B&) (B10). The normal traction continuity condition in the v, periodic
direction is obtained using eqn (3la) in (B8) with 7 = 1. This vields
(FAREVEEY R B 4 (B14)
We note that eqn (32a) 1s idenucally satistied for =1
For the shear traction contnuity conditions i the v direction we obtain from egn (3la) and (B&) with
/=23
W - d 0 (B15)

Again, eqn (32a) s identically satistied for ;= 2.3
To assist in establishing the continuity relations i the FG directions. let us define two new quantities £
and G\7'" as follows

e G e (B16)
s B I A . (B17)
Substituting eqns (31b) and (32b) nto the above definitions. we obtam. respectively :
U g AR A (B18)
G A T B (B19)
By addition and subtraction of equal quantities to and Irom eqns (BI18) and (B19) 1t can easily be verified that
B I S S R A R R (B20)
GV (G R G e F e {B21)

Then employing egns (B20) and (B21) mn egn (B9) with ; - 2.3 we obtain the corresponding relations
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T (x20) ! ERR (g1 (22 ) ! (225) e Lrh
[ Ay IS0 00+ I 0 = ST Vielo ] 7 = S50 0y 3205580 ] =0 (B22)

[ I +;J‘3’,f{‘,“\_ wm I )T ! {J,"!’H:(’l_ll o +§/1_¢J(3’,‘(25_)0_0)]‘”"’ = 0. (B23)
Similarly. using eqns (31¢) and (32¢) with = 2.3 we have

[ -, K"‘vx[/lill) wo F KI“./,/:(E,'H B ‘/ K :’,"{’5". m] et [K(“Z,‘A[‘(:.’U_l ) +13/: K'lj;(ﬂozzvm] s 1 =0 (B24)

[ KO A LREE LR K+ L KR ] = 0. (B25)

As a result of the above manipulations. 44 relations. given by eqns (B14)—(B15) and (B22)—(B25), arise from
the traction continuity conditions between subcells and between neighboring cells. These equations, in conjunction
with eqns (B2)-(B4) and (B11)-(B13). will be employed in reducing the equilibrium and traction continuity
equations to expressions involving only volume-averaged zeroth-order and first-order stresses S ..

Reduction of equilibrium and traction continuity cquations

Substituting eqn (B1) into eqn (B5) and using eqns (B11) and (B12) reduces the volume-averaged equilibrium
equations to a set of 16 equations given by eqn (47). Next. combining the expressions for %), 4, and I‘,’.“(’{)’,u,o),
provided by eqns (B2) and (B13). and the continuity relations (B14)—(B15), respectively, we obtain the 12
equations given by (48)-(50). Continuing. if we substitute eqn (B3) and (B11) into eqns (B22)—(B23) directly, we
obtain eqns (51) and (52). respectively. Finally. combining equations (B4) and (B12). and eqns (B24) and (B295),
yields eqns (53) and (54). respectively.

Displacement continuity conditions

The displacement continuity conditions. 1.e. eqns (33) (34), are now imposed on an average basis at the
interfaces. This is accomphished by first substituting eqn (37) into eqn (33a), yielding eqns (55)-(57), then into
eqns (33b)-(34b). yielding eqns (58)-(61). followed by eqns (33c¢)-(34c¢). yielding eqns (62) and (65). Consequently,
eqns (55)-(65) provide 44 relations which must be imposed to guarantee the continuity of the displacements
between the subcells and between neighboring cells.



